SECTION A : BIOLOGY

1. (a)

| Disease | Causative Agent | Symptoms |
| :--- | :--- | :--- | ---: |
| Gonorrhoea | Neiseria gonorrhea; | Itching of urethra / yellowish discharge /pain when
 urinating / vaginal odour; |
| Candidiasis | Candida albicans; | Itching and burning sensation of genital organs / white
 discharge from the vagina; |

2. (a) (i) Ovary - produces eggs / ova ; and female hormones;

First one correct.
(ii) Uterus - where the embryo develops;

Contraction of the walls aids in the expulsion of the developed foetus during birth / parturition;

First one correct.
(iii) Cowper's gland - secrets an alkaline fluid that neutralizes the acidity along the urethra;
(b) Attachment of the blastocyst to the walls of the uterus; by the villi.
3. A - Pericarp fused with testa;

B - Position of plumule;
C - Position of radicle;
4. (a) The fusion of nucleus of male gamete / sperm with the nucleus of female gamete / ovum; to form a zygote;
(b) In a discontinuous growth, the organism shows a number of periods of rapid growth followed by long periods when no growth occurs; e.g. Growth shown by arthropods; (an example of an arthropod like locust, crab etc).
(2 marks)
5. (a) Variation - the differences in traits that occur among members of the same species;
(1 mark)
(b) (i) Haploidy - Chromosome numbers that are half of the full complement;
(1 mark)
(ii) Genotype - refers to the genes that an organism contain / have for a particular trait. Genetic composition of an organism.
(iii) Dominance - refers to the genes that determine the expression of the genetic trait in offspring;
State where genes express/supress other genes.
6. Blood transfusion; plant / animal breeding; crime detection, disputed parentage
7. (a) (i) Niche - the position that an organism occupies in a habitat / a functional description of a species role in a community / an expression of the range of all the factors that influence whether a species has all the resources it needs and whether it can carry out all the activities necessary for survival and reproducing;
(1 mark)
(ii) Carrying capacity - the maximum population / number of organisms of a particular speies that can be sustained by a given supply of resources; in an environment.
(1 mark)
(b) Special creation - life was brought into existence / created by a supreme being /

God; life was created in perfect forms and have remained unchanged over time;
(2 marks)
8. Sensory neurone - it has a cell body; situated off the axon.

Has receptor dendrites; located in the sensory organ.
Has long dendron and short axon;
Has myelin sheath; with nodes.
First three correct.
9. (a) Geotropism - roots move towards source of water; Plants get anchored in the soil;

First one correct.
(b) Auxins - promote / initiates growth; adventitious root development; causes apical dominance;
Prevent ageing / senescence;
Responsible for tropic movements;
First two correct.
10. Importance of support and movement in plants.

- At cellular level, like growth of pollen tube to bring about fertilization;
- At organ level such as tropic movements for survival value;
- Enable plants to get resources from the environment such as light / water nutrients;
- For escape to avoid harmful stimuli such as temperature;
- Bearing of leaves, fruits

First three correct.
11. (a) But-l-ene. $\sqrt{ }(1) /$ butene
(b) Bormine water. $\sqrt{ }(1 / 2)$

Acidified potassium manganate (VII). $\sqrt{ }(1 / 2) / \mathrm{KMnO}_{4}$
(c) Ripening of fruits.

Manufacture of plastics.
Manufacture of detergents
Manufacture of ethan-1, 2-diol
Manufacture of ethanol through hydrolysis
(Any 2 correct.)
12. (a) haematite $\sqrt{ }(1 / 2)$
magnetite $\sqrt{ }(1 / 2)$
(b) Coke in the furnace burns in the hot air to form carbon (IV) oxide $\sqrt{ }(1)$.

Carbon (IV) oxide $\sqrt{ }(1)$ rises to the middle of the furnance and reacts
with more coke to form carbon (II) oxide $\sqrt{ }(1)$. Carbon (II) oxide/ coke reduces the Iron (III) oxide to the Iron metal and carbon (IV) oxide. $\sqrt{ }(1)$
(c) Making Agricultural implements, nails, sheets, ornaments and horse-shoes. (1 mark)
(Any 1 correct.)
13. (a) X - Dry Sulphur (IV) oxide / dry $\mathrm{SO}_{2} \sqrt{ }(1 / 2) /$ sulphur dioxide

Y - Oleum $\sqrt{ }(1 / 2) \quad / \quad \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(b) Vanadium (V) oxide / Vanadium Pentoxide $\sqrt{ }(1)$ or Platinum/platinised asbestos.
(c) Dissolving SO_{3} in water is an exothermic reaction $\sqrt{ }(1)$ that makes the acid to vaporise $\sqrt{ }{ }^{(1)}$.
14. (a) The reaction is over $\sqrt{ }(1)$ since all the zinc $\sqrt{ }(1)$ granules have been used up. (2 marks)
(b) On the graph $\sqrt{ }(1)$

$1 / 2$ mark for rise in volume $1 / 2$ mark for flattening at the same level
(c) The rate of reaction will be $\sqrt{ }(1)$ slower.
15. (a) Potassium manganate (VII)/ $\mathrm{CaOCl}_{2} \sqrt{ }(1)$
(1 mark)
(b) To remove the more soluble fumes of hydrogen $\sqrt{ }(1)$ chloride gas produced by the acid.
(1 mark)
(c) The moist blue litmus paper turns red. $\sqrt{ }(1 / 2)$

The red litmus paper is then bleached. $\sqrt{ }(1 / 2)$
16. (a) $\mathrm{B} / \mathrm{NH}_{3} \sqrt{ }(1)$

Ammonia gas (RMM 17) is less dense $\sqrt{ }(1 / 2)$ than hydrogen chloride gas/hydrochloric acid gas $(\mathrm{RMM}=36.5)$ and hence diffused faster. $\sqrt{ }(1 / 2)$
(b) In glass tube A, the universal indicator turned Red, $\sqrt{ }(1 / 2)$ while in glass tube B , the universal indicator turned green. $\sqrt{ }(1 / 2)$
17. (a) (i) M: Carbon (IV) oxide $\left(\mathrm{CO}_{2}\right) \sqrt{ }(1 / 2)$, N : Carbon (II) oxide (CO) $\sqrt{ }(1 / 2)$. (1 mark) @ $\frac{1}{2}$ mark
(ii) To allow in air. $\sqrt{ }(1)$
(b) It brings about defforestration. $\sqrt{ }(1)$
global warming / Green house effect
(Any 1 correct.)
(c) - Easier to store $\sqrt{ }(1) /$ it is less bulky

- Amount of energy produced per unit amount is higher in kerosene than charcoal. $\sqrt{ }(1)$ i.e. Kerosene has high heating value than charcoal.
- It is a cleaner fuel compared to charcoal.
(any 2 correct)

18.

$$
\begin{aligned}
R F M & =\frac{\text { mass }(g)}{\text { No.of moles }} \\
\text { RFM } & =\frac{25}{0.25} \quad \sqrt{ }(1 / 2) \\
& =100 \sqrt{ }(1 / 2) \\
x+60 & =100 \sqrt{ }(1 / 2) \\
x & =40 \sqrt{ }(1 / 2)
\end{aligned}
$$

19.

RFM of $\operatorname{Mg}\left(\mathrm{NO}_{3}\right)_{2}=148 \sqrt{ }(1 / 2)$
0.5 mole of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=0.5 \times 148$

$$
=74 \mathrm{~g} \quad \sqrt{ }(1 / 2)
$$

Weigh 74 g of magnesium nitrate and place it in $500 \mathrm{~cm}^{3}$ beaker. $\sqrt{ }(1 / 2)$ Add about $400 \mathrm{~cm}^{3}$ of distilled water and stir to dissolve $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot \sqrt{ }(1 / 2)$ Transfer solution to a litre volumetric flask $\sqrt{ }(1 / 2)$. Rinse beaker and pour the solution into the volumetric flask. Top up the remaining volume with distilled water upto the mark. $\sqrt{ }(1 / 2)$

SECTION C : PHYSICS

20.

21. Any acquired charge flows through the body. $\sqrt{ }$
22. During charging process both Oxygen and hydrogen gas are given off. $\sqrt{ }$

The two can become explosive if exposed to a naked flame. $\sqrt{ }$
23. The bar is a magnet if any of $\sqrt{ }$ it ends is repelled by the magnet North or South poles. $\sqrt{ }$
24. (a) Waves in which the vibration of the particles is always perpendicular to the direction of the wave travel. $\sqrt{ }$
(b) (i) $\quad-0.75 \mathrm{~m}$
(ii) $f=\frac{1}{T}$

$$
\frac{1}{0.4} \quad=\quad 2.5 \mathrm{~Hz}
$$

25. - Density $\sqrt{ }$

- Pressure $\sqrt{ }$
- Humidity/temperature

26. (a) All the current passing through resistor passes through the ammeter.
(b) 2.4 V
27. Coil B has higher resistance than A.
28. (a) (i)

(b) The ray successively passes through the tube (Ray is parallel to the walls of the tube). $\sqrt{ }$
29.

Figure 6
30. Hand x-rays have higher penetration power than soft x-ray. $\sqrt{ }$

Hard x-rays are produced at higher accelerating voltage than soft x-ray. $\sqrt{ }$
Hard x-rays have shorter wave length than soft x-rays. $\sqrt{ }$
31. - Accelerating the electrons. $\sqrt{ }$

- Focusing the electrons into a fine beam. $\sqrt{ }$

32. $\mathrm{E}=\mathrm{Pt} \sqrt{ }$
$=\frac{75}{1000} \times 4 \times 7 \quad \sqrt{ }$
$=$ 2.1 Kilowatt - hours $\sqrt{ }$
33. Pure silicon is doped with a trivalent element. $\sqrt{ }$ This results in the three valency electrons of the impurity pairing with electrons of silicon $\sqrt{ }$ and thus leaving a hole in the structure. $\sqrt{ }$
34. $50 \mathrm{~g} \rightarrow \quad 25 \mathrm{~g} \quad \rightarrow \quad 12.5 \mathrm{~g} \rightarrow \quad 6.5 \mathrm{~g} \quad \sqrt{ }$

Three half lifes $=30 \mathrm{hrs} \sqrt{ }$
Half-life $=10 \mathrm{hrs} \quad \sqrt{ }$

