4.20.1 Electricity Paper 1 (448/1)

SECTION A

1. (a) Procedure of connecting an ammeter to take measurements in a circuit

- Turn - off the power
- Ammeter should be connected in series with the load current.
- Observe polarity.
- Select the range starting from the highest.
(b) (i) Nominal resistance

Orange	Black	Brown		
3	0	x	10^{1}	

$$
\therefore \text { Nominal }=300 \Omega
$$

(ii) Maximum resistance

$$
\begin{equation*}
300+5 \%=315 \Omega \tag{2marks}
\end{equation*}
$$

2. (a) Circuit diagram

- Shows connection of every component.
- Shows values of components.
- Shows the position of the components.
- Shows functionality of the circuit.
(any $2 \times 1=2$ marks)
(b) Bills of materials
- Materials/parts.
- Quantity.
- Size.
- Estimate costs.

3. (a)
(i) Forward bias
reduces $\left(\frac{1}{2}\right)$ the PN -junction (depletion layer) and hence the diode conducts $\left(\frac{1}{2}\right)$.
(ii) Reverse bias
increases ($\frac{1}{2}$) the PN -junction (depletion layer) hence the diode does not conduct $\left(\frac{1}{2}\right)$.
(b) (i) $\quad \mathrm{I}_{\mathrm{F}(\max)}$: is the maximum forward current that the diode can pass without burning out.
(ii) $\quad \mathrm{V}_{\mathrm{F}(\text { (yp) })}$: is the forward voltage across the diode at the typical operating current.
4.

(a) $\mathrm{I}_{\mathrm{p}}=\frac{\mathrm{V}}{\mathrm{R}}$
$\left(\frac{1}{2}\right)$
$=\frac{100 \mathrm{~V}_{\text {rms }}}{1 \mathrm{k} \Omega}$
$=0.1 \mathrm{~A}$
(b) $\quad \mathrm{N}_{1} \mathrm{I}_{1}=\mathrm{N}_{2} \mathrm{I}_{2}$
$\therefore 1200 \times 0.1=400 \times I_{2} \quad\left(\frac{1}{2}\right)$
$\mathrm{I}_{2}=\frac{120}{400}=0.3 \mathrm{~A}$
$\left(\frac{1}{2}\right)$
$\mathrm{V}_{2}=\mathrm{I}_{2} \mathrm{R}_{2}$
$=0.3 \times 8000$
$\left(\frac{1}{2}\right)$
$=2,400$
$\left(\frac{1}{2}\right)$
(5 marks)
5. (a)

(b)

Drawing	$=\left(\frac{1}{2}\right)$
Labelling	$=\left(\frac{1}{2}\right)$
Direction	$=\left(\frac{1}{2}\right)$
	$=1\left(\frac{1}{2}\right)$ marks

6.
(a)
(i) $\quad \mathrm{E}=5+\left(\mathrm{I} \times \mathrm{R}_{1}\right)$
$=5+\left(2 \times 10^{-3} \times 2000\right)$
$=5+4$
$=9 \mathrm{~V}$
$\left(\frac{1}{2}\right)$
$\left(\frac{1}{2}\right)$
(ii)

$$
\mathrm{R}_{2}=\frac{\mathrm{V}_{2}}{\mathrm{I}} \quad\left(\frac{1}{2}\right)=\frac{4 \mathrm{~V}}{2 \mathrm{~mA}} \quad\left(\frac{1}{2}\right)=2 \mathrm{k} \Omega \quad\left(\frac{1}{2}\right)
$$

(iii) $\mathrm{R}_{3}=\frac{\mathrm{V}_{3}}{\mathrm{I}}=\frac{1 \mathrm{~V}}{2 \mathrm{~mA}}=0.5 \mathrm{k}$
(b) (i) Energy consumed

Lights $5 \times 60 \times 4=1.2 \mathrm{kwh}$
Kettle $1 \times 2 \times 0.5=1.0 \mathrm{kwh}$

Total energy $=2.2 \mathrm{kwh}$
(ii) Cost of energy

$$
\begin{equation*}
=2.2 \times 80=1.76 \mathrm{sh} \tag{1}
\end{equation*}
$$

7. (a) Safety precautions to be observed

- Ensure that the equipment is properly earthed.
- Do not use it in damp areas.
- Always remove the plug from the socket when the equipment is not in use.
- When using extensions, ensure the joints are firm and insulated using the electricians insulation tape.
- Hold it firmly.
- Avoid loose clothing like ties.
(b) Communication service providers in Kenya
- Telkom Kenya
- Safaricom
- Airtel
- Yu

8. (a) Insulating materials used in electrical circuits

- PVC
- Porcelain
- Magnesium oxide
- Paper
- Rubber
- Air
- Formica

$$
\left(4 \times \frac{1}{2}=2 \text { marks }\right)
$$

(b) Advantages of PVC

- Easy of erection.
- It is cheap.
- It is resistant to corrosion.
- It is light.
- There is no risk to earth leaks.
(any $3 \times 1=3$ marks)

9. (a) Inductance required

$$
\begin{align*}
& \mathrm{L}=\frac{1}{4 \pi^{2} \mathrm{f}^{2} \mathrm{C}} \tag{1}\\
& =\frac{1}{4 \pi^{2}\left(1.5 \times 10^{5}\right)^{2}\left(10^{-12}\right)} \tag{1}\\
& =1.13 \times 10^{-3} \mathrm{H} \\
& =1.13 \mathrm{H}
\end{align*}
$$

(b) (i) Apparent power

$$
\begin{array}{ll}
=\mathrm{IV} & \left(\frac{1}{2}\right) \\
=2.5 \times 240 & \left(\frac{1}{2}\right) \\
=600 \mathrm{VA} & \left(\frac{1}{2}\right)
\end{array}
$$

(ii) True power
$=$ apparent power \times power factor $\quad\left(\frac{1}{2}\right)$
$=600 \times 0.6$
$=360 \mathrm{w}$ $\left(\frac{1}{2}\right)$
10.

SECTION B

11.
12.

12. (a) Name of waveforms
A - sine wave
$\left(\frac{1}{2}\right)$
B - saw tooth
$\left(\frac{1}{2}\right)$
(b) Number of cycles

A-2 cycles
B-3 $\frac{1}{4}$ cycles
(c) (i) Frequency of waveform \mathbf{A}

$$
\begin{align*}
& =\frac{1}{\mathrm{~T}} \text { where } \mathrm{T}=\text { period } \tag{1}\\
& \mathrm{T}=50 \mu \times 4 \tag{1}\\
& =200 \mu \mathrm{~s} \tag{1}\\
& f=\frac{1}{T}=\frac{1}{200 \times 10^{-6}}=\frac{10^{6}}{200} \tag{1}\\
& =5 \mathrm{kHz} \tag{1}
\end{align*}
$$

(ii) Amplitude

$$
\begin{align*}
\mathrm{A}=\mathrm{V}_{\mathrm{pk}} & =200 \mathrm{mV} \times 3 \tag{1}\\
& =600 \mathrm{mV} \tag{1}
\end{align*}
$$

$$
=0.6 \mathrm{~V}
$$

$$
\begin{equation*}
\mathrm{B}=\mathrm{V}_{\mathrm{pk}}=0.5 \mathrm{~V} \times 2 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=1 \mathrm{~V}_{\mathrm{pk}} \tag{1}
\end{equation*}
$$

(iii) RMS value of \mathbf{A}

$$
\begin{align*}
& =0.707 \times \mathrm{V}_{\mathrm{pk}} \tag{1}\\
& =0.707 \times 0.6 \\
& =0.424 \mathrm{~V} \tag{1}
\end{align*}
$$

13. (a)

(11 marks)
(b) $\begin{array}{llll}\text { (i) } & \text { Lighting circuit } & = & 5 \mathrm{~A} \\ \text { (ii) } & \text { Ring circuit } & = & 30 \mathrm{~A} \\ \text { (iii) } & \text { Water heater } & = & 20 \mathrm{~A} \\ \text { (iv) } & \text { Door bells } & = & 5 \mathrm{~A} \\ \text { (v) } & \text { Cooker unit } & = & 45 \mathrm{~A}\end{array}$
(any $4 \times \frac{1}{2}=2$ marks)
(Total $=11+2=13$ marks)
14. (a) (i) Type of transistor NPN
(ii) Function of capacitor \mathbf{C}

To block D.C
(iii) Type of biasing

Fixed bias
(1)
(b)
(i) $\quad \mathrm{VR}_{1}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{be}}$
$=6.0-0.6$
$=5.4 \mathrm{~V}$
(1)
(ii) $\quad \mathrm{I}_{\mathrm{B}}=\frac{\mathrm{VR}_{1}}{\mathrm{R}_{1}}=\frac{5.4}{100 \times 10^{3}}$
$=5.4 \times 10^{5}$
$=54 \mu \mathrm{~A}$
(iii) $\mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}$
$=54 \times 10^{-6} \times 50$
$=2.7 \mathrm{~mA}$
(iv) Voltage V_{CE}
$\mathrm{VR}_{2}=\mathrm{I}_{\mathrm{C}} \times \mathrm{R}_{2}$
$=2.7 \mathrm{~mA} \times 1 \times 10^{3}$
$=2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{VR}_{2}$
$=6-2.7 \mathrm{~V}$
$=3.3 \mathrm{~V}$
15.
(a) (i) $\quad X_{L}=2 \pi f L$
(1)

$$
\begin{equation*}
=2 \pi \times 50 \times 0.05 \tag{1}
\end{equation*}
$$

$=15.70 \Omega$
$X_{C}=\frac{1}{2 \pi f c}$
$=\frac{1}{2 \pi \times 50 \times 2 \times 10^{-6}}$
$=1592 \Omega$
$Z=\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}}$
$=\sqrt{1000^{2}+(1592-15.7)^{2}}$
$=1866 \Omega$
(ii) \quad Current $=\frac{V}{Z}$
$=\frac{240}{1866}$
$=0.12 \mathrm{~A} \quad\left(\frac{1}{2}\right) \quad$ Amps $\left(\frac{1}{2}\right)$
(b)

(3 marks)

