\qquad
SCHOOL \qquad DATE

CIRCLES, CHORDS AND TANGENTS

KCSE 1989-2012 Form 3 Mathematics		Working Space
1.	1989 Q24 P2 The figure below represents the cross section of a metal bar. The cross section is in the form of a major segment of a circle. M is the midpoint of AB and CM is perpendicular to AB . Given that $\mathrm{AB}=\mathrm{CM}=8 \mathrm{~cm}$. Calculate the area of the cross section (8 marks)	
2	1990 Q20 P1 Two solid spherical balls with centres P and Q touch each other. The balls lie inside and in contact with a hemispherical bowl of centre R. Given that $P Q=13 \mathrm{~cm}, Q R=16 \mathrm{~cm}$ and $P R=19 \mathrm{~cm}$, calculate the radii of the bowl and the two spherical balls. (8 marks)	

		Working Space
	1994 Q21 P1 The figure below shows two pulleys with centres A and B and of radii 10 cm and 5 cm respectively. S and R are contacts points of the belt with the pulleys. The distance between the centres of the two pulleys is 50 cm , and $\mathrm{SAB}=84.260$. A belt is tied around the two pulleys as shown. Calculate the total length of the belt	

		Working Space
7.	1995 Q 19 (a) In the figure below 0 is the centre of a circle whose radius is $5 \mathrm{~cm} . \mathrm{AB}=8 \mathrm{~cm}$ and $\angle \mathrm{AOB}$ is obtuse. Calculate the area of the major segment (6 marks) (b) A wheel rotates at 300 revolutions per minute. Calculate the angle in radians through which a point on the wheel turns in one second.	
8.	1997 Q 5 P2 The figure below represents a circle a diameter 28 cm with a sector subtending an angle of 75° at the centre. Find the area of the shaded segment to 4 significant figures	

		Working Space
9	1998 Q 23 P2 The figure below represents a rectangle $P Q R S$ inscribed in a circle centre O and radius $17 \mathrm{~cm} . P Q=16 \mathrm{~cm}$. Calculate (a) The length PS of the rectangle (2 marks) (b) The angle POS (2 marks) (c) The area of the shaded region (4 marks)	

		Working Space
10	2000 Q 14 P2 In the figure below, BT is a tangent to the circle at B . $A X C T$ and $B X D$ are straight lines $A X=6 \mathrm{~cm}, C T=8 \mathrm{~cm}$, $B X=4.8 \mathrm{~cm}$ and $X D=5 \mathrm{~cm}$. Find the length of (a) XC (b) BT	

		Working Space
12	2002 Q 23 P1 A minor sector of a circle of radius 28 cm includes an angle of 135° at the center. a) (i) Convert 1350 into radians. Hence of otherwise find the area of the sector. ii) Find the length of the minor arc. b) The sector is folded to form a right circular cone. Calculate the : i) Radius of the cone ii) Height of the cone. (Take the value of Π to be 22/7) (8 marks)	

| 13 | | Working Space |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 0 0 3} \mathbf{Q ~ 1 9 ~ P 1 ~}$ | | |
| The figure below shows two circles each of radius 7cm, | | |
| with centers at C and Y . The circles touch each other at | | |
| point Q. | | |

| 14 | | Working Space |
| :--- | :--- | :--- | :--- |
| The figure below shows a circle, centre, 0 of radius 7cm. | | |
| TP and TQ are tangents to the circle at points P and Q | | |
| respectively. OT $=25 \mathrm{~cm}$. | | |

		Working Space
16	2007 Q 14 P1 In the figure below, PQR is an equilateral triangle of side 6 cm . Arcs QR, PR and $P Q$ arcs of circles with centers at P, Q and R respectively. Calculate the area of the shaded region to 4 significant figures (4 marks)	
17	2007 Q 11 P2 In the figure below $A B$ is a diameter of the circle. Chord PQ intersects AB at N . A tangent to the circle at B meets PQ produced at R. Given that $\mathrm{PN}=14 \mathrm{~cm}, \mathrm{NB}=4 \mathrm{~cm}$ and $\mathrm{BR}=7.5 \mathrm{~cm}$, calculate the length of: (a) NR (1 mark) (b) AN (3 marks)	

		Working Space
18	2009 Q 15 P2 In the figure below, AT is a tangent to the circle at A. Angle ATB $=48^{\circ}, \mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{CT}=4 \mathrm{~cm}$ Calculate the length of AT (2 marks)	
19	2011 Q 10 P2 (a) In the figure below, lines NA and NB represent tangents to a circle at points A and B. Use a pair of compasses and ruler only to construct the circle. (2 marks) (b) Measure the radius of the circle. (1 mark)	

		Working Space
20	2012 Q14 P2 In the figure below, the tangent ST meets chord VU produced at T. Chord SW passes through the centre, O, of the circle and intersects chord VU at X. Line $\mathrm{ST}=12 \mathrm{~cm} \text { and } \mathrm{UT}=8 \mathrm{~cm} .$ (a) Calculate the length of chord VU . (b) If $\mathrm{WX}=3 \mathrm{~cm}$ and VX : $\mathrm{XU}=2: 3$, find SX .	

