\qquad
SCHOOL \qquad DATE

BINOMIAL EXPANSIONS

KCSE 1989-2012 Form 3 Mathematics		Working Space
1.	$1989 \text { Q13 P2 }$ Expand $\left[1+\frac{1}{2} x\right]_{8}$ up to term in x^{3} By putting $x=0.1$, find the approximate value of $(1.05)^{8}$ to 2 decimal places. (5marks)	
2.	1990 Q16 P2 Write down the first four terms of $(p+q)^{8}$ using binomial expansion. Use your expansion to evaluate $(9.99)^{8}$ the nearest 100 (4marks)	
3.	1991 Q16 P2 Obtain the binomial expansion for $(1-2 x)^{5}$. Use your expansion to evaluate $(0.98)^{5}$ to five places of decimal (3marks)	

		Working Space
4.	$1992 \text { Q3 P2 }$ Use binomial theorem to expand $\left[1-\frac{1}{2} x\right]^{8}$ up to the forth term. Use your expansion to evaluate $(0.98)^{8}$ by taking $x=0.04$ (3marks)	
5.	1993 Q7 P1 By making use of binomial expansion, determine the value of $(2.002)^{4}$ to four decimal places (3marks)	
6.	1994 Q5 P2 Expand $(1+2 x)^{10}$ up to the term in x^{3}. Hence use our expansion to estimate $(0.95)^{10}$ correct to three decimal places (4marks)	
7.	1996 Q12 P2 Expand $(1+a)^{5}$ use your expansion to estimate (0.8)5 correct to four decimal places (3marks)	

		Working Space
8.	$1997 \text { Q9 P2 }$ Expand and simplify $(1-3 x)^{5}$, up to the term in x^{3} Hence use your expansion to estimate $(0.97)^{5}$ correct to 4 decimal places	
9.	1998 Q13 (a) Write down the simplest expansion $(1+x)^{6}$ (b) Use the expansion up to the fourth term to find the value of $(1.03)^{6}$ to the nearest one thousandth.	
10	1999 Q10 Use binomial expression to evaluate (0.96$)^{5}$ correct to 4 significant figures	

		Working Space
11	2000 Q13 Expand $(1+x)^{5}$, hence, use the expansion to estimate $(1.04)^{5}$ correct to 4 decimal Places	
12	2001 Q10 P2 Expand $(2+x)^{5}$ in ascending powers of x up to the term in x^{3}.Hence, approximate the value of $(2.03)^{5}$ to 4s.f.	
13	2002 Q9 P2 a) Expand $(a-b)^{6}$ b) Use the first three term of the expansion in a (a) to find the approximate value of $(1.98)^{6}$	

		Working Space
14	2003 Q11 P2 a)Expand and simplify the binomial expression $(2-x)^{6}$ (2marks) b) Use the expansion up to the term in x 2 to estimate 1.99^{6} (2marks)	
15	2004 Q8 P2 (a) Expand $(1+x)^{5}$ (b) Use the first three terms of the expansion in (a) to find the approximate value of $(0.98)^{5}$	
16	2005 Q13 P2 Expand and simplify $(3 x-y)^{4}$ Hence use the first three terms of the expansion to approximate the value of $(6-0.2)^{4}$ (4 marks)	

		Working Space
17	2006 Q11 P2 Use binomial expression to evaluate (4 marks) $\left(2+\frac{1}{\sqrt{2}}\right)^{5}+\left(2-\frac{1}{\sqrt{2}}\right)^{5}$	
18	2007 Q4 P2 (a) Expand the expression $\left(1+\frac{1}{2} x\right)^{5}$ in ascending powers of x, leaving the coefficients as fractions in their simplest form (2 marks) (b) Use the first three terms of the expansion in (a) above to estimate the value of $\left(1 \frac{1}{20}\right)^{5} \quad$ (2 marks)	
19	2008 Q8 P2 a) Expand and simplify the expression $\left(10+\frac{2}{x}\right)^{5}$ (2marks) b) Use the expansion in (a) above to find the value of 145 (2marks)	

		Working Space
20	2009 Q8 P2 (a) Expand and simplify the binomial expression $(2-x)^{7}$ in ascending powers of x (2 marks) (b) Use the expansion up to the fourth term to evaluate (1.97) ${ }^{7}$ correct to 4 decimal places (2 marks)	

		Working Space
22	2011 Q11 P2 Expand and simplify the expression. $(a+1 / 2)^{4}+(a-1 / 2)^{4}$	

