NAME \qquad INDEX NUMBER

SCHOOL \qquad DATE

VECTORS

KCSE 1989-2012 Form 2 Mathematics		Working Space
1.	1989 Q11 P2 In the figure below, $\mathbf{A B}=\mathbf{P}, \mathbf{A D}=3 / 5 \mathbf{A C}$ and $\mathbf{C E}=2 / 3$ CB Express DE in terms of \mathbf{p} and \mathbf{q}	
2.	1990 Q21 P1 In a parallelogram $\mathrm{ABCD}, \mathbf{A B}=2 \mathbf{a}$ and $\mathbf{A D}=\mathbf{b}$. M is the midpoint of $A B$. $A C$ cut $M D$ at X. i) Express AC in terms of \mathbf{a} and \mathbf{b} (2 marks) ii) Given that $\mathbf{A X}=\mathrm{mAC}$ and $\mathbf{M X}=\mathrm{nMD}$, where m and n are constants, find m and n.	

		Working Space
3.	1990 Q8 P2 In a triangle $A B C, D$ is the midpoint of $A B$ and E is a point on $B C$ such that $B E=2 / 3 B C$. If $\mathbf{A D}=\mathbf{P}$ and $\mathbf{A C}=\mathbf{Q}$, express $\mathbf{E C}$ in terms of \mathbf{p} and \mathbf{q}. (2 marks)	
4.	1990 Q10 P2 A point T divides a line $A B$ internally in the ratio $5: 2$. Given that A is $(-4,10)$ And B is $(10,3)$ find the coordinates of T .	
5.	1991 Q6 P1 In the diagram below OABC is a parallelogram. $A B$ is produced to T such that $B T$: $A B=1: 2$. M is the midpoint of AC . Given that $\mathbf{O A}=\mathbf{a}$ and $\mathbf{O C}=\mathbf{c}$. Express MT in term of a and c.	

		Working Space
6.	1991 Q20 P1 In the figure below E is the midpoint of $\mathrm{BC}, \mathrm{AD}: \mathrm{DC}=$ $3: 2$ and F is the point of intersection of $B D$ and $D E$. B i) Given that $\mathbf{A B}=\mathbf{b}$ and $\mathbf{A C}=\mathbf{c}$ express $\mathbf{A E}$ and BD in terms of b and c ii) Given further that $\mathbf{B F}=\mathrm{tBD}$ and $\mathbf{A F}=\mathrm{sAE}$ find the values of s and t.	
7.	1992 Q11 P1 Three points A, B and P are in straight line such that $\mathbf{A P}=\mathrm{tAB}$. Given that the coordinates of A, B and P are $(3,4)(8,7)$ and (x, y) respectively, express x and y in terms of t . (3marks)	

		Working Space
8.	1992 Q24 P1 OABC is a trapezium such that the coordinates of $0, A, B$ and C are $(0,0),(2,-1),(4,3)$ and $(0, y)$. a) Find the value of y (2 marks) b) M is a midpoint of $A B$ and N is a midpoint of OM. Show that A, N and C are collinear. (6 marks)	
9.	1992 Q7 P2 The vectors \mathbf{p}, \mathbf{q} and y are expressed in terms of the vectors t and s as follow: $\begin{aligned} & \mathbf{p}=3 \mathbf{t}+2 \mathrm{~s} \\ & \mathbf{q}=5 \mathbf{t}-\mathrm{s} \\ & \mathbf{y}=\mathrm{ht}+(\mathrm{h}-\mathrm{k}) \mathrm{s} \end{aligned}$ where h and k are constants. Given that $y=2 \mathbf{p}-3 \mathbf{q}$, find the values of and k. (4marks)	
10	1993 Q21 P1 OABC is a trapezium in which $\mathbf{O A}=\mathbf{a}, \mathbf{O C}=\mathbf{c}$ and $\mathbf{C B}=\mathbf{3 a}$. $C B$ is produced to such that $C B: B D=3: 1 . E$ is a point on $A B$ such that $\mathbf{A B}=\mathbf{2 A E}$. Show that $0, E$ and d are collinear.	

11	1993 Q16 P1 In the figure below $\mathbf{C A}=\mathrm{b} \mathbf{C B}=\mathrm{a}, \mathbf{A X}=\mathbf{X Y}$ and $\mathbf{A Y}=\mathbf{Y B}$. C	
12	1994 Q24 P1 In the figure below $\mathrm{AB}=\mathrm{a}, \mathrm{AD}=\mathrm{b}, \mathrm{AX}: \mathrm{XC}=2: 3$ and $X B=4: 5$ A b D a) Express i) AC ii) DC in terms of \mathbf{a} and \mathbf{b} in the simplest form. (6 marks) b) If $\mathbf{D C}=n \mathbf{a}+m \mathbf{b}$, find the values of n and m (2 marks)	

		Working Space
13	1994Q12P2 Find the position vector of point R which divides line MN internally in the ratio 2: 3 . Take the position vectors of M and N to be $\begin{gathered} 4 \\ (-5-12)^{4} \end{gathered} \quad \mathbf{M}=(34-6)^{-6} \quad \text { and } \mathbf{N}=$	
14	1994 Q10 P2 In the figure below $\mathrm{OC}=3 \mathrm{CA}$ and $\mathrm{OD}=3 \mathrm{DB}$. By taking $\mathrm{OA}=\mathrm{a}, \mathrm{OB}=\mathrm{b}$, show that $\mathrm{CD} / / \mathrm{AB}$. (3 marks) C	
15	1994 Q15 P2 In the figure below ABCD is a parallelogram. AOC and BOD are diagonals of the parallelogram. Show that the diagonals of the parallelogram bisect each other. Give reasons. (3 marks)	

	D C	Working Space
16	1995 Q 18 P1 The figure below is a right pyramid with a rectangular base ABCD and VO as the height. The vectors $\mathbf{A D}=a$, $\mathbf{A B}=\mathrm{b} \text { and } \mathbf{D V}=\mathrm{c}$	

17	1996 Q 22 P1 a) In the diagram below OABC is a parallelogram, $\mathbf{O A}=\mathrm{a}$ and $\mathbf{A B}=\mathrm{b} . \mathrm{N}$ is a point on $\mathbf{O A}$ such that ON: NA = 1: 2 (b) Find (i) $\quad \mathbf{A C}$ in terms of \mathbf{a} and \mathbf{b} (ii) $\quad \mathbf{B N}$ in terms of \mathbf{a} and \mathbf{b} (c) The lines AC and BN intersect at X, $\mathbf{A X}=\mathrm{h} \mathbf{A C}$ and $\mathbf{B X}=\mathrm{kBN}$ (i) By expressing $\mathbf{O X}$ in two ways, find the values of h and k (ii) Express $\mathbf{O X}$ in terms of \mathbf{a} and b	Working Space
18	1997 Q 11 P2 $A B C$ is a triangle and P is on $A B$ such that P divides $A B$ internally in the ratio $4: 3$. Q is a point on $A C$ such that $P Q$ is parallel to $B C$. If $A C=14 \mathrm{~cm}$ (i) State the ratio $\mathrm{AQ}: \mathrm{QC}$ (ii) Calculate the length of QC	
19	1997 Q 22 P1 In the figure below $\mathbf{O A}=\mathrm{a}, \mathbf{O B}=\mathrm{b}, \mathbf{A B}=\mathbf{B C}$ and $\mathbf{O B}$: $\text { BD }=3: 1$	

20 | 1998 Q 9 P2 |
| :--- |
| In the figure, KLMN is a trapezium in which KL is |
| parallel to NM and KL = 3 NM |

	vectors of P and R are $2 i+2 j+13 k$ and $5 i-3 j+4 k$ respectively. Q divides PR Internally in the ratio 2:1. Find the (a) Position vector of Q . (b) Distance of Q from the origin	
23	1999 Q 21 P1 In triangle $\mathrm{OAB}, \mathbf{O A}=\mathbf{a}, \mathbf{O B}=\mathbf{b}$ and P lies on AB such that AP: BP = 3:5 (a) Find the terms of \mathbf{a} and \mathbf{b} the vectors (i) AB (ii) $\mathbf{A P}$ (iii) $\mathbf{B P}$ (iv) $\mathbf{O P}$ (b) Point Q is on $O P$ such $A Q=\frac{-5}{8} \mathbf{a}+\frac{9}{40}-\mathbf{b}$. Find the ratio OQ: QP	
		Working Space
24	2000 Q 21 P1 The figure below shows triangle OAB in which M divides $O A$ in the ratio 2:3 and N divides $O B$ in the ratio 4:1 AN and BM inter sect at X .	

	(a) Express in terms of p and r the vectors (i) $\mathbf{O Q}$ (ii) OT (b) Vector $\mathbf{O S}$ can be expressed in two ways: mOQ or OT + n TP, Where m and n are constants express OS in terms of (i) m, \mathbf{p} and \mathbf{r} (ii) n, \mathbf{p} and \mathbf{r} Hence find the: (iii) Value on m (iv) Ratio OS: SQ
27	2002 Q 10 P2 The coordinates of points $0, P, Q$ and R are $(0,0),(3,4)$, $(11,6)$ and $(8,2)$ respectively. A point T is such that vectors $\mathbf{O T}, \mathbf{Q P}$ and $\mathbf{Q R}$ satisfy the vector equation. $\mathbf{O T}=\mathbf{Q P}+\frac{1}{2} \mathbf{Q R}$. Find the coordinates of T .

28	2002 Q 4 P1 The position vectors of points X and Y are $\mathrm{x}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ and $y=3 i+2 j-2 k$ respectively. Find $\mathbf{X Y}$	Working Space
29	$2003 \text { Q } 6 \text { P1 }$ Given that $x=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}, y=-3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$ and $\mathrm{z}=-5 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ and that $\mathrm{p}=3 \mathbf{x}-\mathbf{y}+2 \mathrm{z}$. Find the magnitude of vector p to 3 significant figure (4 mks)	
30	2003 Q 21 P1 In the figure below, vector $\mathrm{OP}=\mathbf{p}$ and $\mathrm{OR}=\mathbf{r}$. Vector $O S=2 \mathbf{r}$ and OQ $=3 / 2 \mathbf{p}$. a) Express in terms of p and r (i) $\mathbf{Q R}$ and (ii) PS b) The lines QR and PS intersect at K such that $\mathbf{Q K}=\mathrm{m} \mathbf{Q R}$ and $\mathbf{P K}=\mathrm{n} \mathbf{P S}$, where m and n are scalars. Find two distinct expressions for OK in terms of $\mathrm{p}, \mathrm{r}, \mathrm{m}$ and n . Hence find the values of m and n. c) State the ratio $\mathrm{PK}: \mathrm{KS}$	
31	$2004 \text { Q } 4 \text { P1 }$ Given that $\mathbf{O A}=3 \mathbf{i}-2 \mathbf{j}+$ and $\mathbf{O B}=4 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$. Find the distance between points A and B to 2 decimal places.	

		Working Space
32	2004 Q 21 P1 a) If A, B and C are the points P and Q are p and q respectively is another point with position vector $r=3 / 2 \mathbf{q}-1 / 2 \mathbf{p}$. Express in terms of p and q. i) $\quad \mathbf{P R}$ ii) $\quad \mathbf{R Q}$ hence show that P, Q and R are collinear. iii) Determine the ratio $P Q: Q R$.	
33	2005 Q 13 P1 Point T is the midpoint of a straight line AB. Given the position vectors of A and T are $\mathrm{i}-\mathrm{j}+\mathrm{k}$ and $2 \mathrm{i}+1 \frac{1}{2} \mathrm{k}$ respectively, find the position vector of B in terms of i, j and k . (3 marks)	
34	2005 Q 18 P1 The points P, Q, R and S have position vectors $2 \mathbf{p}, 3 \mathbf{p}, \mathbf{r}$ and $3 \mathbf{r}$ respectively, relative to an origin 0 . A point T divides PS internally in the ratio 1:6 (a) Find, in the simplest form, the vectors OT and QT in terms \mathbf{P} and \mathbf{r} (4 marks) (b) (i) Show that the points Q, T, and R lie on a straight line (3 marks) (ii) Determine the ratio in which T divides $Q R$ (1 mark)	

35	2006 Q 12 P1 Two points P and Q have coordinates $(-2,3)$ and $(1,3)$ respectively. A translation map point P to $P^{\prime}(10,10)$ a) Find the coordinates of Q^{\prime} the image of Q under the translation (1 mark) (ii) The position vector of \mathbf{P} and \mathbf{Q} in (a) above are p and q respectively given that $m \mathbf{p}-n \mathbf{q}=(-129)$ (3 marks) b) Find the value of m and n	
36	2006 Q 22 P1 In the diagram below, the coordinates of points A and B are $(1,6)$ and $(15,6)$ respectively). Point N is on OB such that $3 \mathrm{ON}=20 \mathrm{~B}$. Line OA is produced to L such that $\mathrm{OL}=3 \mathrm{OA}$	

	(a) Find vector LN (b) Given that a point M is on LN such that LM: MN $=3: 4$, find the coordinates of (2 marks) (c) If line OM is produced to T such that $\mathrm{OM}: \mathrm{MT}=$ 6:1 (i) Find the position vector of T (1 mark) (ii) Show that points L, T and B are collinear (4 marks)	Working Space
37	2006 Q 9 P2 Given that $q \mathbf{i}+1 / 3 \mathbf{j}+2 / 3 \mathbf{k}$ is a unit vector, find q (2 marks)	
38	2007 Q 21 P1 In the figure below, $\mathbf{O Q}=\mathrm{q}$ and $\mathbf{O R}=r$. Point X divides $O Q$ in the ratio 1: 2 and Y divides $O R$ in the ratio 3: 4 lines $X R$ and $Y Q$ intersect at E.	

41	$2008 \text { Q } 4 \text { P2 }$ The position vectors of points A and B are (3-1 - 4) and ($8-66$) respectively. A point P divides $A B$ in $A B$ it he ratio 2:3. Find the position Vector of point P. (3mks)	
42	2009 Q 20 P1 The position vectors of point A and B with respect to the 0 ,are (-85) and $(12-5)$ respectively Point M is the midpoint of $A B$ and N is the midpoint of OA.	Working Space
	(a) Find: i) The coordinates of N and $\mathrm{M} \quad(3 \mathrm{mks})$ ii) The magnitude of NM (3 mks) (b) Express vector NM in term of OB. (c) Point P maps onto P by a translation (-58) Given that $\mathbf{O P}=\mathbf{O M}+\mathbf{2 M N}$, find the coordinates of P^{\prime}	
43	$2009 \text { Q } 6 \text { P2 }$ Vector $\mathbf{O A}=(21)$ and $\mathbf{O B}=(6-3)$ Point C is on OB such $C B=2 O C$ and point D is on $A B$ such that $A D=3 D B$. Express $\mathbf{C D}$ as a column vector.	
44	2010 Q 7 P1 In the figure below, $O P Q R$ is a trapezium in which $P Q$ is parallel to $O R$ and M is the mid-point of $Q R$ and $\mathbf{O P}=\mathbf{p}$,	

45	2010 Q 18 P2 In the figure below OJKL is a parallelogram in which $\mathrm{OJ}=3 \mathrm{p}$ and $\mathrm{OL}=2 \mathrm{r}$ 0 $3 p$ J a) If A is a point on LK such that $\mathrm{LA}=1 / 2 \mathrm{AK}$ and point B divide the line JK externally in the ratio $3: 1$, express $\mathbf{O B}$ and $\mathbf{A J}$ in terms of \mathbf{p} and \mathbf{r}. (2 marks) b) Line OB interests AJ at X such that $\mathbf{O X}=\mathrm{mOB}$ and $\mathbf{A X}=\mathrm{nAJ}$. i) Express $\mathbf{0 X}$ in terms of \mathbf{p}, \mathbf{r} and $m .(1 \mathrm{mark})$ ii) Express $\mathbf{O X}$ in terms of \mathbf{p}, \mathbf{r} and n (1 mark) iii) Determine the value of m and n and hence the ratio in which point x divides line AJ.	
46	2011 Q 13 P2 Vector $\mathbf{O P}=6 \mathbf{i}+\mathbf{j}$ and $\mathbf{O Q}+-2 \mathbf{i}+5 \mathbf{j}$. A point N divides $\mathbf{P Q}$ internally in the ratio $3: 1$. Find $\mathbf{P N}$ in terms of i and j. (3 mks)	
47	2011 Q 23 P1	

	In the figure below, ABCD is a trapezium. AB is parallel to DC , diagonals AC and DB intersect at X and $\mathrm{DC}=2 \mathrm{AB}$. $\mathbf{A B}=\mathbf{a}, \mathbf{D A}=\mathbf{d}, \mathbf{A X}=\mathrm{k} \mathbf{A C}$ and $\mathbf{D X}=\mathrm{hDB}$ where h and k are constants. a) Find in terms of a and d i) $B C$ (2 mks) ii) AX (2 mks) iii) DX (1 mks)	
48	$\begin{aligned} & \mathbf{2 0 1 2} \mathbf{Q 9} \mathbf{~ P 1} \\ & \text { Given that } \mathbf{O A}=2 \mathbf{i}+3 \mathbf{j} \text { and } 3 \mathbf{i}-2 \mathbf{j} \\ & \text { Find the magnitude of } \mathbf{A B} \text { to one decimal place } \end{aligned}$	

