NAME	INDEX NUMBER
SCHOOL	DATE

VECTORS

KCS	E 1989 – 2012 Form 2 Mathematics	Working Space
1.	1989 Q11 P2 In the figure below, $AB = P$, $AD = 3/5 AC$ and $CE = 2/3 CB$	
2.	1990 Q21 P1 In a parallelogram ABCD, AB = 2a and AD = b. M is the midpoint of AB. AC cut MD at X. i) Express AC in terms of a and b (2 marks) ii) Given that AX = mAC and MX = nMD, where m and n are constants, find m and n. (6 marks)	
	(O marks)	

		Working Space
3.	1990 Q8 P2 In a triangle ABC, D is the midpoint of AB and E is a point on BC such that BE = ² / ₃ BC. If AD =P and AC = Q , express EC in terms of p and q . (2 marks)	
4.	1990 Q10 P2 A point T divides a line AB internally in the ratio 5 : 2. Given that A is (-4, 10) And B is (10, 3) find the coordinates of T. (4 marks)	
5.	1991 Q6 P1 In the diagram below OABC is a parallelogram. T C M O A AB is produced to T such that BT: AB = 1:2. M is the midpoint of AC. Given that OA = a and OC = c . Express MT in term of a and c. (3 marks)	

		Working Space
6.	 1991 Q20 P1 In the figure below E is the midpoint of BC, AD: DC = 3:2 and F is the point of intersection of BD and DE. B Image: A for the point of intersection of BD and DE. B Image: A for the point of intersection of BD and DE. B Image: A for the point of intersection of BD and DE. Image: A for the point of intersection of BD and DE. Image: A for the point of intersection of BD and DE. Image: A for the point of intersection of BD and DE. Image: A for the point of intersection of BD and DE. Image: A for the point of intersection of BD and DE. Image: A for the point of intersection of BD and DE. Image: A for the point of the point of	
7.	1992 Q11 P1 Three points A, B and P are in straight line such that AP = t AB . Given that the coordinates of A, B and P are (3,4) (8,7) and (x,y) respectively, express x and y in terms of t. (3marks)	

8.	1992 Q24 P1 OABC is a trapezium such that the coordinates of O,A,B and C are (0,0),(2,-1), (4, 3) and (0, y). a) Find the value of y (2 marks) b) M is a midpoint of AB and N is a midpoint of OM. Show that A, N and C are collinear. (6 marks)	Working Space
9.	1992 Q7 P2 The vectors p , q and y are expressed in terms of the vectors t and s as follow: $\mathbf{p} = 3\mathbf{t} + 2\mathbf{s}$ $\mathbf{q} = 5\mathbf{t} - \mathbf{s}$ $\mathbf{y} = h\mathbf{t} + (h - k)\mathbf{s}$ where h and k are constants. Given that $\mathbf{y} = 2\mathbf{p} - 3\mathbf{q}$, find the values of and k. (4marks)	
10	1993 Q21 P1 OABC is a trapezium in which OA = a , OC = c and CB = 3a . CB is produced to such that CB : BD = 3: 1. E is a point on AB such that AB = 2AE . Show that O, E and d are collinear. (8 marks)	

17	 1996 Q 22 P1 a) In the diagram below OABC is a parallelogram, OA = a and AB = b. N is a point on OA such that ON: NA = 1: 2 C C F and C and C	Working Space
19	AB internally in the ratio 4:3. Q is a point on AC such that PQ is parallel to BC. If AC = 14 cm (i) State the ratio AQ:QC (ii) Calculate the length of QC 1997 Q 22 P1 In the figure below OA = a, OB = b, AB = BC and OB : BD = 3:1	

	vectors of P and R are 2i + 2j + 13k and 5i – 3j + 4k respectively. Q divides PR Internally in the ratio 2:1. Find the (a) Position vector of Q. (b) Distance of Q from the origin	
23	1999 Q 21 P1 In triangle OAB, OA = a , OB = b and P lies on AB such that AP: BP = 3:5 (a) Find the terms of a and b the vectors (i) AB (ii) AP (iii) BP (iv) OP (b) Point Q is on OP such $AQ = \frac{-5}{8}a + \frac{9}{40}$ _b. Find the ratio OQ: QP	
		Working Space
24	2000 Q 21 P1 The figure below shows triangle OAB in which M divides OA in the ratio 2: 3 and N divides OB in the ratio 4:1 AN and BM inter sect at X.	

	 (a) Given that OA = a and OB = b, express in terms of a and b: (i) AN (ii) BM (b) If AX = s AN and BX = tBM, where s and t are constants, write two expressions for OX in terms of a,b s and t. Find the value of s Hence write OX in terms of a and b 	
25	2001 Q 16 P1 The position vectors for points P and Q are 4 i + 3 j + 2k and 3i – 6j + 6k respectively. Express vector PQ in terms of unit vectors I, j and k. Hence find the length of PQ, leaving your answer in simplified form.	
		Working Space
26	2001 Q 19 P1 The figure below shows a parallelogram OPQR with O as the origin, OP = p and OR = r , Point T divides RQ in the ratio 1:4 and PT Meets OQ at S.	

28	2002 Q 4 P1 The position vectors of points X and Y are x=2 i + j – 3 k and y =3 i + 2 j -2 k respectively. Find XY	
		Working Space
29	2003 Q 6 P1 Given that $x = 2i + j - 2k$, $y = -3i + 4j - k$ and $z = -5i + 3j + 2k$ and that $p = 3x - y + 2z$. Find the magnitude of vector p to 3 significant figure (4mks)	
30	2003 Q 21 P1 In the figure below, vector $OP = \mathbf{p}$ and $OR = \mathbf{r}$. Vector $OS = 2\mathbf{r}$ and OQ $= 3/2\mathbf{p}$.	
	 a) Express in terms of p and r (i) QR and (ii) PS b) The lines QR and PS intersect at K such that QK = m QR and PK = n PS, where m and n are scalars. Find two distinct expressions for OK in terms of p,r,m and n. Hence find the values of m and n. (5mks) c) State the ratio PK:KS 	
31	2004 Q 4 P1 Given that OA = 3 i -2 j + and OB = 4 i + j – 3 k . Find the distance between points A and B to 2 decimal places.	

		Working Space
32	 2004 Q 21 P1 a) If A, B and C are the points P and Q are p and q respectively is another point with position vector r = 3/2q -1/2 p. Express in terms of p and q. i) PR ii) RQ hence show that P, Q and R are collinear. iii) Determine the ratio PQ: QR. 	
33	2005 Q 13 P1	
	Point T is the midpoint of a straight line AB. Given the position vectors of A and T are i-j + k and $2i + 1 \frac{1}{2} k$ respectively, find the position vector of B in terms of i, j and k. (3 marks)	
34	2005 Q 18 P1 The points P, Q, R and S have position vectors 2p, 3p, r and 3r respectively, relative to an origin O. A point T divides PS internally in the ratio 1:6 (a) Find, in the simplest form, the vectors OT and QT in terms P and r (4 marks) (b) (i) Show that the points Q, T, and R lie on a straight line (3 marks) (ii) Determine the ratio in which T divides QR (1 mark)	

	 (a) Find vector LN (3 marks) (b) Given that a point M is on LN such that LM: MN = 3: 4, find the coordinates of (2 marks) (c) If line OM is produced to T such that OM: MT = 6:1 (i) Find the position vector of T (1 mark) (ii) Show that points L, T and B are collinear (4 marks) 	Working Space
37	2006 Q 9 P2 Given that q i + 1/3 j + 2/3 k is a unit vector, find q (2 marks)	
38	2007 Q 21 P1 In the figure below, OQ = q and OR = r. Point X divides OQ in the ratio 1: 2 and Y divides OR in the ratio 3: 4 lines XR and YQ intersect at E.	

	 (a) Express in terms of q and r (i) XR (1 mark) (ii) YQ (1 mark) (b) If XE = m XR and YE = n YQ, express OE in terms of: (1 mark) (i) r, q and m (ii) r, q and n (1 mark) (c) Using the results in (b) above, find the values of m and n. (6 marks) 	
39	2007 Q 12 P2 Vector q has a magnitude of 7 and is parallel to vector p. Given that $p = 3 i - j + 1 \frac{1}{2} k$, express vector q in terms of i, j, and k. (2 marks)	
40	2008 Q 19 P2 In the figure below AB=p, AD= q, DE= ½ AB and BC= 2/3 BD P P P P A D a) Find in terms of p arid q the vectors: (1mk)	Working Space
	(i) BD ; $(1mk)$ (ii) BC ; $(1mk)$ (iii) CD ; $(1mk)$ (iv) AC . $(2mks)$ b)Given that AC =k CE , where k is a scalar, find (i)The value of k(i)The ratio in which C divides AE (1mk)	

41	 2008 Q 4 P2 The position vectors of points A and B are (3 - 1 - 4) and (8 - 66) respectively. A point P divides AB in AB it he ratio 2:3. Find the position Vector of point P. (3mks) 	
42	2009 Q 20 P1 The position vectors of point A and B with respect to the O,are (-85) and $(12 - 5)$ respectively Point M is the midpoint of AB and N is the midpoint of OA.	
		Working Space
	 (a) Find: i) The coordinates of N and M (3 mks) ii) The magnitude of NM (3 mks) (b) Express vector NM in term of OB. (c) Point P maps onto P by a translation (-58) Given that OP=OM+2MN, find the coordinates of P' 	
43	2009 Q 6 P2 Vector OA =(2 1) and OB = (6 – 3) Point C is on OB such CB=2OC and point D is on AB such that AD=3DB. Express CD as a column vector. (3 mks)	
44	2010 Q 7 P1 In the figure below, OPQR is a trapezium in which PQ is parallel to OR and M is the mid-point of QR and OP=p ,	

