NAME \qquad INDEX NUMBER

SCHOOL
DATE

TRIGONOMETRY

KCSE 1989-2012 Form 2 Mathematics		Working Space
1.	1989 Q4 P1 When the angle of elevation of the sun is 58°, a vertical pole casts a shadow of length 5 m on a horizontal ground. Find the height of the pole	
	(2marks)	
2	1990 Q12 P1 The angle of elevation of the top of a cliff from point P is 45°. From a point Q which is 10 m from P towards the foot of the cliff, the angle of elevation is 48°. Calculate the height of the cliff. (4marks)	
3	1990 Q12 P2 Towns A, B, C and D are such that A is 15 km north of B, C is 8 km east of B, D is directly east of A and on a bearing 060° from C. Find the distance between towns A and D, giving your answer to two significant figures (3marks)	

		Working Space
4	1994 Q23 P2 A flag post 10 m long is fixed on top of a tower. From a point on horizontal ground, the angles of elevation of the top and bottom of the flag post are 40° and 33° respectively. Calculate (a) The height of the tower (6marks) (b) The shortest distance from the point on the ground to the top of the flag post (2marks)	
5	1996 Q4 P1 A man walks directly from point A towards the foot of a tall building 240 m away. After covering 180 m , he observes that the angle of the top of the building is 45°. Determine the angle of elevation of the top of the building from A . (3 marks)	
6	1997 Q5 P1 There are two signposts A and B on the edge of the road. A is 400 m to the west of b . A tree is on a bearing of 060° from A and a bearing of 330° from B. Calculate the shortest distance of the tree from the edge of the road.	

		Working Space
7	1998 Q6 P1 A point A is directly below a window. Another point B is 15 m from A and at the same horizontal level. From B angle of elevation of the top of the bottom of the window is 30° and the angle of elevation of the top of the window is 35°. Calculate the vertical distance. (a) From A to the bottom of the window (b) From A to the bottom to top of the window (c) From the bottom to the top of the window	
8	1998 Q4 P2 In the figure below $\mathrm{ABC}=30^{\circ}, \quad \mathrm{ACB}=\angle \mathrm{ADC}=90^{\circ}$, Calculate the length of (a) AC (b) BC	

		Working Space
9	2000 Q7 P1 Given that $\sin \theta=2 / 3$ and θ is an acute angle find: (a) Tan θ giving your answer in surd form	
10	2001 Q20 P2 An electric pylon is 30 m high. A point S on top of the pylon is vertically above another point on the ground. Points A and B are on the same horizontal ground as R. Point A is due south of the pylon and the angle of elevation of S from A is 26°. Point B is due west of the pylon and the angle of elevation of S from B is 32°. a) Distance from A and B (6marks) b) bearing B from A (2marks)	
11	2003 Q12 P1 Two straight paths are perpendicular to each other at point p.One path meets a straight road at point A while the other meets the same road at B . Given that PA is 50 metres while PB is 60 metres. Calculate the obtuse angle made by path PB and the road.	

		Working Space
12	2005 Q7 P1 Given that $\sin (90-\mathrm{x})^{0}=0.8$, where x is an acute angle, find without using mathematical tables the value of $\tan \mathrm{x}^{0}$.	
13	2006 Q11 P1 The diagram below represents a school gate with double shutters. The shutters are such opened through an angle of 63°. The edges of the gate, PQ and RS are each 1.8 m Calculate the shortest distance QS, correct to 4 significant figures	
14	$2007 \text { Q8 P1 }$ Given that x is an acute angle and $\cos x=\frac{2 \sqrt{5}}{5}$, find without using mathematical tables or a calculator, $\tan (90-x)^{0}$.	

		Working Space
15	2007 Q15 P1 Points L and M are equidistant from another point K . The bearing of L from K is 330°. The bearing of M from K is 220°. Calculate the bearing of M from L	
16	2007 Q18 P1 In the diagram below PA represents an electricity post of height 9.6m. QB and RC represents two storey buildings of heights 15.4 m and 33.4 m respectively. The angle of depression of A from B is $5.5^{\circ} \mathrm{While}$ the angle of elevation of C from B is 30.5° and $\mathrm{BC}=35 \mathrm{~m}$. (a) Calculate, to the nearest metre, the distance $A B$ (b) By scale drawing find, (i) The distance AC in metres (5 marks) (ii) $\angle \mathrm{BCA}$ and hence determine the angle of depression of A from C (3 marks)	

		Working Space
17	2008 Q20 P1 The diagram below represents two vertical watchtowers AB and CD on a level ground. P and Q are two points on a straight road BD . The height of the tower $A B$ is 20 m road a $B D$ is 200 m . a) A car moves from B towards D. At point P, the angle of depression of the car from point A is 11.3^{0}. Calculate the distance BP to 4 significant figures. b) If the car takes 5 seconds to move from P to Q at an average speed of $36 \mathrm{~km} / \mathrm{h}$, calculate the angle of depression of Q from A to 2 decimal places c) Given that $\mathrm{QC}=50.9 \mathrm{~m}$, calculate; (i) The height of CD in meters to 2 decimal places; (2mks) (ii) The angle of elevation of A from C to the nearest degree.	

		Working Space
18	2009 Q12 P1 An electric pole is supported to stand vertically on a level ground by a tight wire. The wire is pegged at a distance of 6 metres from the foot of the pole as shown. The angle which the wire makes with the ground is three times the angle it makes with the pole. Calculate the length of the wire to the nearest centimeter.	
19	2010 Q13 P1 Given that $3 \theta^{\circ}$ is an acute angle and $\sin 3 \theta^{\circ}$, find the value of θ. (3 marks)	
20	2011 Q5 P1 Given that $\sin (x+60)^{0}=\cos (2 \mathrm{x})$, find $\tan (x+60)^{0}$	
21	2012 Q10 P1 Given that $\tan x^{0}=\frac{3}{7}$, find the $\cos (90-x)^{0}$ giving the answer to 4 significant figures	

