\qquad
SCHOOL \qquad DATE

SIMILARITY AND CONGRUENCY

		Working Space
7	1993 Q16 P1 In the triangle ABC below $\mathrm{AC}=8 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and angle $B C A=30^{\circ}$. Point D divides $B C$ in the ratio 1:4 and point E divides AC in the ratio 2:3. Find the area of the quadrilateral ABDE (3 marks)	

		Working Space
9	$1994 \text { Q9 P9 }$ A container of height 30 cm has a capacity of 1.5 litres. What is the height of a similar container of capacity 3.0 m^{3} ?	
	(3 marks)	
10	1995 Q7 P2 The ratio of the lengths of the corresponding sides of two similar rectangular water tanks is $3: 5$. The volume of the smaller tank is $8.1 \mathrm{~m}^{3}$. Calculate the volume of the larger tank.	
	(3 marks)	
11	1996 Q10 P2 Pieces of soap are packed in a cuboid container measuring 36 cm by 24 cm by 18 cm . Each piece of soap is similar to the container. If the linear scale factor between the container and the soap is $1 / 6$, find the volume of each piece of soap.	

		Working Space
12	2002 Q15 P2 In the diagram below, ABCD is a trapezium with AB parallel to DC . The diagonals AC and BD intersect at E . a) Giving reasons show that triangle ABE is similar to triangle CDE. b) Giving that $A B=3 D C$, find the ratio of $D B$ to $E B$.	
13	2005 Q8 P2 The volumes of two similar solid cylinders are 4752 cm^{3} and $1408 \mathrm{~cm}^{3}$. If the area of the curved surface of the smaller cylinder is $352 \mathrm{~cm}^{2}$, find the area of the curved surface of the larger cylinder.	

| 14 | Working
 2009 Q21 P1
 A glass in the form of a frustum of a cone, is represented
 by the diagram below. The glass contains water to a
 height of 9 cm . The bottom of the glass is a circle of
 radius 2 cm while the surface of the water is a circle of
 radius 6 cm. | |
| :--- | :--- | :--- | :--- |

		Working Space
16	2012 Q24 P1 In the figure below, PQ is parallel to RS . The lines PS and RQ intersect at $T . R Q=10 \mathrm{~cm}, \mathrm{RT}: \mathrm{TQ}=3.2$, angle $\operatorname{PQT}=40^{\circ}$ and angle RTS $=80^{\circ}$. (a) Find the length of RT. (2 marks) (b) Determine, correct 2significant figures: (i) The perpendicular distance between $P Q$ and RS; (2 marks) (ii) The length of TS (2 marks) (c) Using the cosine rule, find the length of RS correct to 2significant figures. (2 marks) (d) Calculate correct to one decimal place, the area of triangle RTS. (2 marks)	

