1.		8M	7	Let speed of B be x km/h	3M
	(a)44.25km/h			And " "A be (x + 5)km/h	
	(b) 244.69km			Time for A = $\frac{3120}{5}$ hours	
	1989Q21			<i>x</i> +5	
2	D - C X T	4 M		Time for $B = \frac{3120}{100}$ hours	
۷.	$D = 3 \times 1$ = 16 x 16 = 9 km	411			
	$-10 \times 72 - 0 \text{ Km}$			3120 , 3120	
	x 32-x			$= \frac{1}{x} - 4 = \frac{1}{x+5}$	
	$t = \frac{1}{16} = \frac{1}{8}$			3120(x + 5) - 4x(x + 15) = 3120x	
	8x = 16(32 - x)			$3120x + 15600 - 4x^2 - 20x$	
	8x = 512 - 16x			= 3120x	
	24x = 512			$3120x + 15600 - 4x^2 - 20x$	
	$x = 211/_{2}$ km			= 3120X	
	64			$4x^2 + 20x - 15600 = 0$	
	$t = \frac{1}{3} \div 16$			$x^2 + 3x - 3900 = 0$ (y = 60) (y + 65) = 0	
	$=\frac{64}{3} \times \frac{1}{11} = \frac{4}{3}$			(x = 00)(x + 00) = 0 y = 60 km/h	
	3 16 3 Time taken – 1hr 20min			1996Q16	
	8.00 ± 1.20				
	= 9.20 m 199105		8.	a). <u>300</u>	B1
	- 9.20um 1991Q3			t-1	
3	II = 20 m/s	3M		b). speed of the bus = <u>500</u>	B1
0.	$A = 2m/s^2$	011		t-1	
	T = 5			<u>500</u> : <u>300</u> = 5: 3	A1
				t-1 t-1	3
	Area = ½ x 5 (20 +30) + ½ x 30 x 4			1997Q14	Mar
	$= \frac{5}{2} \times 50 + 30 \times 2$		0	Current of alarman athlata 000	KS M1
	= 125 + 60		9.	Speed of slower athlete = $\frac{800}{109}$	MI
	=185m			$\frac{100}{100}$	
	1992Q14			$\frac{108}{108}$	
4	1201	214		= 29.63	A1
4.	120km/h 1992Q2	3M		27.00	
	Lat the distance servered by Ondiely	2M		1997Q15	
5.	be v km	2141			
	Distance covered by $\Omega got = x-5$ in		10.	← →	
	time t				
	T = x - 5 = x				
	$\frac{1}{5}$ 10			72 PN 72 M 9.1	
	10x - 50 = 8x			KM R	
	2x = 50			Distance covered by bus A at 10cm	D 1
	x= 25m			$- 90 \times 2 - 190 \text{ km}$	
	1993Q9			- 70 x 2 - 100KIII Rus R Time hetween 2stons	
6.	182km	3M		=72 = 1.2 hrs (1hr 12min)	
	1995Q16			Bus B leaves L at 9.17a m	B1
				Distance between 9.17 – 100a.m	
L		1			

LINEAR MOTION MARKING SCHEME

	$60 \times \frac{43}{10} = 43 \text{ km}$	
	60 At 102 m bus Bhas covered	
	(72 + 43) = 115km	D1
	Distance between bus A and B at	
	10a m	OIVI
	= 360 - (180 + 115) = 65 km	
	1999Q9	
11.	Let dist. Covered by be x km	
	$\underline{X} = \underline{220 - x} + \frac{3}{4}$	
	60 80	M1
	$4x = 3(220 - x) + 3 \times 60$	M1
	$4x = 3(220 - x) + 3 \times 60$	M1
	4x = 660 - 3x + 180	
	4x = 660 - 3x + 180	
	7x = 840	
	x = 120	
	Dist. bus covered	A1
	1.25 x 60 + 45	
		4 M
	1999Q9	
12.	distance covered	-
	$= 15x^{12}/_{60}$	B1
	= 15km	
	Distance covered by taxi	M1
	$= \frac{x - 15}{75} = \frac{x}{55}$	AI
	/5 95	2.14
	$X = \frac{95 \times 15}{20}$	3 M
	20 x = 71.23 200002	
13.	Let x be speed of zebra	M1
	3.5x = 1.5(x+20) + 340	
	3.5x = 1.5x + 30 + 340	M1
	2x = 370	
	X=185km/h	A1
	Buffalo's speed is 185+20 =205km	
	2001Q15	3 M
14.	a). 72 km/h = 72×100 m	B1
	60 x 605	
		M1
	b)Let 1 be length of train	A1
	1 + 80 = 15	3 M
	20 1 = 300 - 80	
	= 220m	
	200306	
15.	Distance = 72+78 =150m	M1

	Speed =108 +72 =180km/h	
	Time = <u>150 x 60 x 60</u>	M1
	180 x 1000	A1
	=3 sec	3 M
	2004Q4	
16.	The speed of the car is (x+20)km/h	B1
	Time taken by the car = $\frac{280}{x}$ hrs	
	Time taken by the car = $\frac{780}{x-20}$ hrs	M1
	$280/_{x}-280/_{x}+20 = 7/_{6}$	
	290(y+20) 290y = 7/c	M1
	$\frac{200(x+20)-200x}{x(x+20)} = 76$	
	x (x+20)	
	$7v^2 + 140v - 22600$	
	2.20 4000 0	
	x ² +20x-4800=0	A1
	x ² -60x+80x-4800=0	
	x(x-60)+80(x-60)=0	A1
	(x-60)(x+80)=0	
	x=80 or x=60	
	b). time taken by the lorry = 12.15	
	=4 hrs	
	Distance covered by lorry = speed	
	x time	
	= 60 x 4	
	= 240km	
	Time taken by the car = distance	
	time	
	= 240	
	$\frac{100}{100} = 24 \text{ hrs}$	
	Time left town M = $1215-2$ hrs 24	
	minutes	
	= 9.51a.m 2005017	
17.	a), i). Distance of bus from Nairobi	M1
	560-2.5 x 60	
	= 350km	A1
	ii). Let distance be xkm	B1
	for bus x=150+60t	
	for car $x = 100t$	
	100t =150+60t	
	$T = {}^{3}/h$	
	= 375km	B1
	b). Yet to be covered	
	500-375 = 125km	B1

	Time bus takes	M1
	= ¹²³ / ₆₀ 2hrs 15 minutes 125 or 125minutes	A1 10 M
	New speed of car 125 125 = 100 125 - 25 x 10	M1 A1
	60 x = 75 km/hr	B1
	Or Distance from Nairobi	M1
	500 -60 x 25 - 350km	A1
	Relative velocity 100 -60 =40km/hr	
	Time car takes to reach bus $150/40 = 3.34$ h	B1
	Distance covered	M1
	$^{39}/_{4} \ge 100 = 375 \text{km}$	A1
b). Time taken by car for remainit distance 25min -2hrs 5 minutes		
	Average speed	
	$\frac{125}{1^{2/3}}$ =75km/hr	
	2006Q20	
18.	Amount of fuel used = $\frac{120}{4} \times \frac{8}{3}$	M1
	= 50 litres	MI A1
	= 4720	3 M
	2007Q16	
19.	a).	B1
	y 2.5	B1
		B1
	×	M1
	b). i). x ² +y ² =2.5x	M1
	$y/_{2.4} = x/_{3.2}$	M1
	ii). $y = \frac{3}{4x}$ $x^2 + \frac{(3}{4x})^2 = 2.5^2$	M1
	$16x^2 + 9x^2 = 6.25 \times 16$	A1
	$x^2 = 6.25 \times 16$	B1

22.	Let the distance be d km	M1
	d_{75} and d_{95}	M1
	: Time taken = $\frac{25}{20} = \frac{11}{4}$ hr	A1
	d_{1} d_{2} d_{3} d_{4}	AI
	$\frac{110}{75} \frac{110}{45} = \frac{10}{60}$	
	= 118.75 d = 119.75 km	
	2010Q4	
23.	Let d be distance	M1
	$\frac{3a}{5} - \frac{a}{2} = \frac{a}{10}$	М1
	% change	141 1
	$= 10 \times 100\%$	
	d	A1
	$= \underline{d} \times \underline{2} \times 100$	3
	10 d - 2004	
	= 20%	
24.	(a) (i) let the distance covered by	
	bus be b km $700-b$	M1
	Therefore; time by train = $\frac{100}{50}$	M1
	Time by bus = $\frac{b}{-}$	
	75 700-b b	
	$\frac{1}{50}$ + $\frac{1}{75}$ = $11^{1}/_{2}$ - $\frac{1}{2}$	
		M1
	$\frac{2100 - 36 + 2b}{150} = 11$	
	150	
	$2100 - h = 11 \times 150$	
	b = 2100 – 1650	A1
	b = 450	М1
	(ii) Time taken by the train	MIT
	$= \frac{700 - 450}{50}$	
	= 5hours	
	Total time before departure of bus	M1
	= 5hours + 30min	A1
	Departure time for the bus:	M1
	= 8.00 + 5 hrs + 30 min	111
	= 1.50p.m	
	(b) time the bus took before	M1
	departure	AI
	$=\frac{187.5}{75}$	10
	75	10

	Time needed to cover the	
	remaining part of	
	the journey:	
	$= 11^{1}/_{2} - (5^{1}/_{2} + 2^{1}/_{2} + \frac{1}{4})$	
	$= 3^{1}/_{4}$ hrs	
	2011Q18	
25.	$\frac{x}{x} = \frac{x}{x} + \frac{1}{x}$	M1
	8 20 4	
	$\frac{x}{x} - \frac{x}{x} = \frac{1}{x}$	
	8 20 4	
	$r = 3\frac{1}{2}$	
	$\kappa = 3 \frac{3}{3}$	M1
	Distance to shopping centre	A1
	$12 - 3\frac{1}{2} = 8\frac{2}{2}km$	3
	3 3	
	2012Q7	