SCHOOL DATE

MEASUREMENT

KCSE 1989-2012 Form 1 Mathematics		Working Space
1.	$1989 \text { Q9 P1 }$ The base of an open rectangular tank is 3.2 m by 2.8 m . Its height is 2.4 m . It contains water to a depth of 1.8 m . Calculate the surface area of inside the tank that is not in contact with water. (2 marks)	
2	1989 Q16 P2 The solid shown in the figure below consists of a cylinder and a hemisphere of equal diameters of 14 cm . If the height of the solid is 22 cm , find its volume.	

		Working Space
3	1990 Q9 P1 The figure below shows a sector of a circle. If the area of the sector is $30.8 \mathrm{~cm}^{2}$, calculate the length of the arc AB . (Take π to be ${ }^{22} / 7$) (3 marks) B	
4	1990 Q11 P1 The figure below shows a vertical section of a hemispherical pot centre 0 . The radius $O A$ of the pot is 20 cm . If the pot contains water to a depth of 8 cm , calculate the diameter of the water surface. (3 marks)	

		Working Space
5	1990 Q14 P1 The figure below shows an equilateral triangle ABC inscribed in a circle of radius 6 cm . Calculate the length of the side of the triangle. (2 marks)	
6	1990 Q13 P2 A metal bar 14 cm long and 5 cm in diameter is melted down and cast into circular washers. Each washer has an external diameter of 4 cm and an internal diameter of $11 / 2 \mathrm{~cm}$ and is 0.3 cm thick. Calculate the number of complete washers obtained. (Take $Л^{22} / 7$) (4 marks)	
7	1991 Q12 P1 A cone of radius 20 cm has a slant height of 52 cm . A frustum is cut off from this cone Such that its top is 10 cm and its slant height is 26 cm (see diagram below). Calculate the area of the curved surface of the frustum. (3 marks)	

| 1991 Q17 P2 |
| :--- | :--- |
| The metal solid shown in the figure below is made up |
| by joining a hemisphere of radius 7cm to a cylinder of |
| the same radius. The mass and density of the solid are |
| 40kg and 17.5 gm per cm3, respectively. Calculate the |
| height of the cylindrical part of the solid. |

		Working Space
9	1992 Q4 P1 The two diagonals of a parallelogram are 20 cm and 28.8 cm . The acute angle between them is 62°.Calculate the area of the parallelogram. (3 marks)	
10	1992 Q15 P1 In the figure below, ABCD is a square of side 4 cm . BYD are arcs of circles centres A and C respectively. Calculate the area of the shaded region. (Take Л 3.14)	
11	1992 Q17 P1 A room is to be constructed such that its external length and breadth are 7.5 m and 5.3 m respectively. The thickness of the wall is 15 cm , and its height is 3.3 cm . A total space of $5 \mathrm{~m}^{3}$ is to be left out in the walls for a door and windows. (a) Calculate the volume of the material needed to construct the walls without the door and the windows. (b) The block used in constructing the walls are $45 \mathrm{~cm} \times 20 \mathrm{~cm} \times 15 \mathrm{~cm} .0 .225 \mathrm{~m} 3$ of cement mixture is used to join the blocks. Calculate the number of blocks needed to construct the room. (4marks)	

		Working Space
12	1992 Q22 P1 The diagram below shows a model of a cylindrical water tank. The total surface area of the model is $0.4 \mathrm{~m}^{2}$ and the surface area of the actual tank is $14.4 \mathrm{~m}^{2}$. (i) If the height of the tank is 2.1 m , find the height of the model. (4marks) ii) If the capacity of the model is 23.15 litres, find the capacity of the tank to the nearest litre. (4marks)	
13	1992 Q20 P2 A swimming pool 30 m long is 1 m deep at its shallow end 4 m deep at its deep end. The pool is 14 m wide. (a) Find the volume of water, in cubic metres, when the pool is full. (4marks) (b) A circular pipe of diameter 14 cm is used to empty the swimming pool. Water flows through pipe at a rate of 5 m per sec. Calculate the time it would take, to the nearest minute, to empty the pool. (4marks)	

14		Working Space
The figure alongside shows the cross-section of a metal		
bar of length 40mm.The ends are equal semi-circles.		

		Working Space
17	$1995 \text { Q } 4 \text { P2 }$ Calculate volume of a prism whose length is 25 cm and whose cross- section is an equilateral triangles of 3 cm	
18	$1995 \text { Q } 9 \text { P2 }$ A boat moves $27 \mathrm{~km} / \mathrm{h}$ in still water. It is to move from point A to a point B which is directly east of A. If the river flows from south to North at $9 \mathrm{~km} / \mathrm{h}$, calculate the track of the boat	
19	1995 Q 14 P2 Two containers, one cylindrical and one spherical, have the same volume. The height of the cylindrical container is 50 cm and its radius is 11 cm . Find the radius of the spherical container. (2 marks)	
20	1996 Q 7 P2 In the figure below BAD and CBD are right angled triangles. Find the length of AB (4 marks)	

		Working Space
21	1997 Q 6 P1 A cylinder of radius 14 cm contains water. A metal solid cone of base radius 7 cm and height 18 cm is submerged into the water. Find the change in height of the water level in the cylinder.	
22	1997 Q 16 P2 A metal bar is a hexagonal prism whose length is 30 cm . The cross - section is a regular hexagon with each side of the length 6 cm . Find (i) the area of the hexagonal face (ii) the volume of the metal bar	
23	1998 Q 11 P1 A cylindrical container of radius 15 cm has some water in it. When a solid is submerged into the water, the water level rises by 1.2 cm . (a) Find, the volume of the water displaced by the solid leaving your answer in terms of Л (b) If the solid is a circular cone of height 9 cm , calculate the radius of the cone to 2 decimal places.	

		Working Space
24	1998 Q 21 P1 A cylindrical can has a hemisphere cap. The cylinder and the hemisphere are of radius 3.5 cm . The cylindrical part is 20 cm tall. Take π to be $22 / 7$ Calculate (a) the area of the circular base (b) the area of the curved cylindrical surface (c) the area of the curved hemisphere surface (d) The total surface area.	
25	$1998 \text { Q } 11 \text { P2 }$ A balloon, in the form of a sphere of radius 2 cm , is blown up so that the volume increase by 237.5%. Determine the new volume of balloon in terms of π	
26	1999 Q4 P1 An open right circular cone has a base radius of 5 cm and a perpendicular height of 12 cm . Calculate the surface area of the cone.(Take $\pi=3.14$)	

29	1999 Q 23 P1 The diagram below shows a cross- section of a bottle. The lower part ABC is a hemisphere of radius 5.2 cm and the upper part is a frustrum of a cone. The top radius of the frustrum is one third of the radius of the hemisphere. The hemisphere part is completely filled water as shown in the diagram. When the container is inverted, the water now completely fills only the frustrum part. (a) Determine the height of the frustrum part (b) Find the surface area of the frustrum part of the bottle.	
30	2000 Q 9 P1 The figure below shows an octagon obtained by cutting off four congruent triangles from rectangle measuring 19.5 by 16.5 cm Calculate the area of the octagon	Working Space

35 | The diagram below represents a solid made up of a |
| :--- |
| hemisphere mounted on a cone. The radius of the cone |
| and the radius of the hemisphere are each 6 cm and the |
| height of the cone is 9 cm . |
| Calculate the volume of the solid. Take π as $22 / 7$ |

37	2001 Q 23 P2 The diagram below represents a pillar made of Cylindrical and regular hexagonal parts. The diameter and height of the cylindrical part are 1.4 m and 1 m respectively. The side of the regular hexagonal face is 0.4 m and height of hexagonal part is 4 m . a) Calculate the volume of the: i) Cylindrical part ii) Hexagonal part b) An identical pillar is to be built but with a hollow centre cross - section area of $0.25 \mathrm{~m}^{2}$. The density of the material to be used to make the pillar is $2.4 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the mass of the new pillar.		
		Working	Space

44	2003 Q 17 P1 A rectangular tank whose internal dimensions are 1.7 m by 1.4 m by 2.2 m is three - quarters full of milk. a) Calculate the volume of milk in the tank in cubic metres. b) The milk is to be packed in small packets. Each packet is in the shape of a right pyramid on an equilateral triangular base of side 16 cm . The height of each packet is 13.6 cm . Full packets obtained are sold at sh. 25 per packet. Calculate i) The volume of milk in cubic centimeters, contained in each packet to 2 significant figures (4 marks) ii) The exact amount that will be realized from the sale of all the packets of milk.	
45	2003 Q 9 P2 The surface area of a solid hemisphere is radius rcm is $75 \pi \mathrm{~cm}^{2}$. Find the volume of the solid, leaving your Answer in terms of π (4 marks)	

46
Find the volume of the prism.
2004 Q 13 P1 $\mathbf{Q} \mathbf{1 9}$ P1
The figure below represents a hexagon of side 5 cm .
The figure below represents a model of a solid
structure in the shape of a frustum of a cone with
hemispherical top.
The diameter of the hemispherical part is 70 cm and is
equal to the diameter of the top of the frustum. The
frustum has a base diameter of 28 cm and slant height of
60 cm.

48	2005 Q 3 P1 The area of a rhombus is $60 \mathrm{~cm}^{2}$. Given that one of its diagonals is 15 cm long, Calculate the perimeter of the rhombus (3 marks)	
49	2005 Q 12 P1 A cylindrical piece of wood of radius 4.2 cm and length 150 cm is cut length into two equal pieces. Calculate the surface area of one piece (Take π as $22 / 7$) (4marks)	
50	2005 Q 19 P1 The diagram below represents a rectangular swimming pool 25 m long and 10 m wide. The sides of the pool are vertical. The floor of the pool slants uniformly such that the depth at the shallow end is 1 m at the deep end is 2.8 m . (a) Calculate the volume of water required to completely fill the pool.	
		Working Space
	b) Water is allowed into the empty pool at a constant	

| container. The model whose total height is 15 cm is |
| :--- | :--- | :--- |
| made up of a conical top, a hemispherical bottom and |
| the middle part is cylindrical. The radius of the base of |
| the cone and that of the hemisphere are each 3 cm . The |
| height of the cylindrical part is 8 cm . |
| (a) Calculate the external surface area of the model |
| (b) The actual storage container has a total height of 6 |
| metres. The outside of the actual storage container is |
| to be painted. Calculate the amount of paint required if |
| an area of $20 \mathrm{~m}^{2}$ requires 0.75 litres of the paint |
| (6 marks) |
| 2007 9 P1 |
| A cylindrical solid of radius 5 cm and length 12 cm |
| floats lengthwise in water to a depth of 2.5 cm as shown |

| 63 |
| :--- | :--- | :--- |
| Determine the area of the plot in hectares correct to |
| two decimal places |

(a) Determine the length of AB.

(b) Calculate the surface area of the cuboid
(c) Given that the density of the material used
to make the cuboid is 7.6g/cm ${ }^{3}$, calculate its
mass in kilograms.
(d) marks)
(determine the number of such cuboids that
can fit exactly in a container measuring
1.5m by 1.2m by 1m.

(2 marks)

MEASUREMENT MARKING SCHEME

1.	$\begin{array}{\|l\|} \hline 2.4 \mathrm{~m}-1.8 \mathrm{~m}=0.6 \mathrm{~m} \\ 3.2 \times 0.6 \mathrm{~m} \times 2=3.84 \mathrm{~m}^{2} \\ 2.8 \mathrm{~m} \times 0.6 \mathrm{~m} \times 2=3.36 \mathrm{~m}^{2} \\ 3.8 \mathrm{~m} \times 0.6 \mathrm{~m} \times 2 \times 3.3 \mathrm{~m}^{2} \\ 3.84 \mathrm{~m}^{2}+3.36 \mathrm{~m}^{2} \\ =7.20 \mathrm{~m}^{2} \\ \end{array}$	2M
2.	$\begin{aligned} \mathrm{V} & =\pi \mathrm{r}^{2} \mathrm{~h}+2 / 3 \pi \mathrm{r}^{3} \\ & =\left(\frac{22}{7} \times 7^{2} \times 15\right) \\ + & \left(\frac{2}{3} \times \frac{22}{7} \times 7^{3}\right) \\ & =2310+718.67 \mathrm{~cm}^{3} \\ & =3,028.67 \mathrm{~cm}^{3} \end{aligned}$ 1989Q16	4M
3.	$\begin{aligned} & \mathrm{A}= \frac{\theta}{360} \pi \mathrm{r}^{2} \\ & 30.8=\frac{72}{360} \times \frac{22}{7} \times \mathrm{r}^{2} \\ & \mathrm{r}^{2}= \frac{30.8 \times 360 \times 07}{72 \times 22} \\ & \mathrm{r}^{2}= \frac{77616}{1584} \\ & \mathrm{r}^{2}=49 \\ & \mathrm{r}^{2}=7 \\ & \mathrm{AB}=\frac{72}{360} \times \frac{22}{7} \times 7 \\ &=8.8 \mathrm{~cm} \end{aligned}$	3M
4.	$\begin{aligned} & \hline 20 \mathrm{~cm}-8 \mathrm{~cm}=12 \mathrm{~cm} \\ & 20^{2}-122=400-144 \\ & \quad=256 \\ & \sqrt{256}=16 \mathrm{~cm} \\ & 16 \times 2 \\ & =32 \mathrm{~cm} \end{aligned}$	3M
5.	$\begin{aligned} & \frac{a}{\sin A}=\frac{B}{\sin B} \\ & \frac{6}{\sin 30}=\frac{X}{\sin 120^{\circ}} \\ & \mathrm{X}=\frac{6}{\sin 30^{\circ}} \times \sin 120^{\circ} \\ & =10.392 \mathrm{~cm} \end{aligned}$	2M

6.	$\begin{aligned} & \mathrm{V}=\pi \mathrm{r}^{2} \\ & \frac{22}{7} \times(2.5)^{2} \times 14 \\ & =275 \mathrm{~cm}^{3} \\ & \left(\frac{22}{7} \times 4 \times 0.3\right)-\left(\frac{22}{7} \times\left(\frac{3}{4}\right)^{2} \times 0.3\right) \\ & \frac{26.4}{7}-\frac{3.7125}{7}=\frac{22.6875}{7} \\ & \begin{array}{l} X=\frac{275 \times 7}{22.6875} \\ =84.8 \\ =84 \end{array} \end{aligned}$	4M
7.	$\begin{aligned} & \mathrm{A}=\pi \mathrm{rl} \\ & \left(\frac{22}{7} \times 20 \times 5.2\right)-\left(\frac{22}{7} \times 10 \times 26\right) \\ & \frac{22880}{7}-\frac{5720}{7} \\ & \frac{17160}{7} \\ & 2451.42 \mathrm{~cm}^{2} \text { or } 2450.76 \mathrm{~cm}^{2} \end{aligned}$	3M
8.	$\begin{aligned} & V=\frac{2}{3} \pi \mathrm{r}^{3} \\ & \frac{2}{3} \times \frac{22}{7} \times 7 \\ & \frac{2156}{3} \mathrm{~cm}^{3} \\ & \frac{40 \times 1000}{17.5}=2285.7142 \mathrm{~cm}^{3} \\ & 2285.7142-\frac{2156}{3}=1567 \\ & 1567=\frac{22}{7} \times 7^{2} \times \mathrm{h} \\ & \mathrm{~h}=\frac{1567 \times 7}{49 \times 22} \\ & \mathrm{~h}=10.18 \mathrm{~cm} \end{aligned}$	8M
9.	$\begin{aligned} \mathrm{A} & =2 \mathrm{ab} \sin \theta \\ & =2 \times 20 \times 28.8 \times \sin 62^{\circ} \\ & =154.3 \mathrm{~cm}^{2} \end{aligned}$	3M

10.	$\begin{aligned} & \mathrm{A}=\left(\frac{90}{360} \times 14 \times 4^{2}\right)-\left(\frac{1}{2} \times 4 \times 4\right) \\ & 12.56-8=4.56 \\ & 4.56 \times 2 \\ & =9.12 \mathrm{~cm}^{2} \end{aligned}$	4M
11.	$\begin{aligned} \text { (a) vol } & =\{(7.5 \times 3.3)-(7.2 \times 5)\} 3.3 \\ & =\{39.75-36.0\} 3.3 \\ & =3.75 \times 3.3 \\ & =12.375 \mathrm{~m}^{3} \\ \text { Vol required } & =12.375-5 \\ & =7.375 \mathrm{~m}^{3} \end{aligned}$ $\begin{aligned} & \text { (b) Vol of blocks }=7.375-0.225 \\ & =7.15 \mathrm{~m}^{3} \\ & \begin{aligned} & \text { No of blocks }=\frac{7.15}{0.0135}=529.6 \\ &=530 \text { blocks } \\ & \mathbf{1 9 9 2 Q 1 7} \end{aligned} \end{aligned}$	8M
12.	$\begin{gathered} \text { (i) } \frac{0.4}{14.4}=\frac{4}{10} \times \frac{10}{144}=\frac{4}{144} \\ \text { l.s.f }=\sqrt{\frac{4}{144}} \\ \frac{2}{122} \times 2.1=0.35 \mathrm{~m} \end{gathered}$ $\begin{aligned} & \text { (ii) V.S.F }=\left(\frac{2}{12}\right)^{3}=\frac{8}{1728} \\ & \frac{1728}{8} \times 23.15 \\ & =5000 \text { litres } \end{aligned}$	4M
13.	(a) $\begin{aligned} V & =(\mathrm{L} \times \mathrm{W} \times \mathrm{H})+(1 / 2 \mathrm{~b} \times \mathrm{hxl}) \\ = & (30 \times 14 \times 1)+(1 / 2 \times 3 \times 30 \times 14) \\ & =(420+630) \\ & =1050 \mathrm{~cm}^{3} \end{aligned}$ $\begin{aligned} & \text { (b) vol drained per second } \\ & =3.14 \times 72 \times 500 \\ & =76930 \mathrm{~cm}^{3} \end{aligned} \quad \begin{aligned} & \frac{1050 \times 100000}{76930}=13648.77 \text { seconds } \\ & \frac{13648.77}{60}=227 \text { minutes } \end{aligned}$	4M

14.	$\begin{aligned} & \mathrm{V}=(\mathrm{l} \times \mathrm{w} \times \mathrm{h})+\pi \mathrm{r}^{2} \mathrm{~h} \\ & (21 \times 30 \mathrm{x} 40)+\left[\frac{22}{7} \times(10.5) 2 \times 40\right] \\ & 25200+13860 \\ & =39060 \mathrm{~mm}^{3} \\ & \begin{array}{l} \frac{39060}{1000} \end{array} \\ & \begin{array}{l} \text { Mass } \end{array}=39.06 \mathrm{~cm}^{3} \\ & \quad=343.06 \times 8.8 \end{aligned}$	4M
15.	$\begin{aligned} & \text { V.S.F }=\left(\frac{1}{3}\right)^{3}=\frac{1}{27} \\ & \frac{27}{27}-\frac{1}{27} \\ & =\frac{26}{27} \end{aligned}$ $1993 Q 15$	3M
16.	$\begin{aligned} & \mathrm{V}=\pi \mathrm{r}^{2} \mathrm{H}+2 / 3 \pi \mathrm{r}^{3} \\ & (22 / 7 \times 1.752 \times 5)+\left(2 / 3 \times 22 / 7 \times 4.2^{3}\right) \\ & \frac{336.875}{7}+\frac{1086.624}{7}=\frac{1423.499}{7} \\ & \quad=203.357 \\ & \quad=203.4 \mathrm{~cm}^{3} \end{aligned}$	3M
17.	$\begin{aligned} \mathrm{V} & =\mathrm{A} \times \mathrm{h} \\ \mathrm{~A} & =\sqrt{s(s-a)(s-b)(s-b)} \\ & =\sqrt{4.5 \times 1.5 \times 1.5 \times 1.5} \\ & =\sqrt{15.1875}=3.8971143 \\ \mathrm{~V} & =3.8971143 \\ & =97.43 \mathrm{~cm}^{3} \end{aligned}$	
19.	$\begin{aligned} & \pi \mathrm{r}^{2} \mathrm{~h}=4 / 3 \pi \mathrm{r}^{3} \\ & \pi \times 11^{2} \times 50=4 / 3 \pi \mathrm{r}^{3} \\ & \mathrm{R}^{3}=\frac{6050 \pi \mathrm{x}}{4 \pi} \\ & \mathrm{r}=4537.5 \\ & \mathrm{r}=16.5 \mathrm{~cm} \\ & \mathrm{r}=16.56 \mathrm{~cm} \end{aligned}$	2M
20.	$\begin{aligned} & 1+x^{2}=(2 \mathrm{x}-)^{2}-1 \\ & 3 \mathrm{x}^{2}-4 \mathrm{x}-1=0 \\ & x=\frac{4 \pm \sqrt{28}}{6} \\ & =1.549 \end{aligned}$ 1996 Q7	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A } \\ 1 \end{array}$

21.	Volume of the cone $\begin{aligned} & =1 / 3 \times 22 / 7 \times 7 \times 7 \times 18 \\ & =924 \mathrm{~cm}^{3} \end{aligned}$ Let change in height be h Volume of water displaced $\begin{aligned} & =22 / 7 \times 14 \times 14 \times \mathrm{h} \\ & =616 \mathrm{~cm}^{2} \\ & \pi \times 14 \times 14 \times \mathrm{h}=1 / 3 \pi \times 7 \times 7 \times 18 \\ & \mathrm{H}=\frac{49 \times 6}{} \quad 14 \times 14 \end{aligned}$	M1 M1 M1 A1 4 M
22.	i). Area of equid. $\begin{aligned} \Delta & =1 / 2 \times 6 \times \sin 60^{0} \\ & =1 / 2 \times 6 \times 0.8669 \\ & =15.588(15.59) \end{aligned}$ $\begin{aligned} & x=\text { section area } \\ &=1 / 2 \times 6 \times 6 \times 0.8660 \times 6 \\ &=15.59 \times 6 \\ &=93.54(93.528) \end{aligned}$ ii). Vol. of prism $=93.54 \times 30$ $=2806.2(2805.9)$	M1 M1 A1 M1 A1
23.	$\begin{aligned} & \text { Volume }=\pi \mathrm{r} 2 \mathrm{~h}=\pi 15 \times 1.2 \\ & \text { 270Л } \end{aligned}$ (b) $1 / 3 \pi \times \mathrm{rx} 9=270 \pi$ $\begin{aligned} & r^{2}=\frac{270 \times 3}{9}=90 \\ & r^{2}=\sqrt{90}=10.947 \end{aligned}$ $1998 Q 11$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { 3M } \end{array}$
24.	(a) area of the circular based $22 / 7 \times 2 \times 3.5 \times 3.5=38.5$ (b) area of the curved S.A $22 / 7 \times 2 \times 3.5 \times 20=440 \mathrm{~cm}^{2}$ (c) $\begin{aligned} & 4 / 3 \pi r^{2}=2 / 3 \times 22 / 7 \times 3.5^{2} \\ & 44 \times 0.5 \times 3.5 \\ & 22 \times 3.5=77 \mathrm{~cm}^{2} \end{aligned}$ (d) $38.5+440+77 \mathrm{~cm}^{2}$	A1 M1 A1 M1 A1 M1 M1 A1 8M

25.	$\begin{aligned} & \text { Initial volume }=\frac{4}{3 \pi r^{3}} \times 2^{3}=\frac{3211}{3} \\ & \begin{aligned} \text { New vol } & =32 \pi \times 337.5 \\ & =36 \pi \end{aligned} \end{aligned}$ $1998 Q 11$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { 2M } \end{aligned}$
26.	$\begin{aligned} \text { Area } & =3.142 \times 5 \times 13 \\ & =204.23 \mathrm{~cm}^{2} \end{aligned}$ If base area included M1 AO	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ 2 \mathrm{M} \end{array}$
27	a). $y^{2}-2 x^{2} \mathrm{~cm}^{2}$ b). $\begin{aligned} & 2 x^{2}=142 \\ & x=7 \sqrt{2} \end{aligned}$ c). area of octagon 1999Q8	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \\ \text { M1 } \\ \text { A1 } \end{array}$
28.	Length of the pipe $\begin{aligned} & \underline{63}=(0.15 \times 0.12 \times 01) \\ & 7000 \\ = & 0.009 \div 0.006 \\ = & 1.5 \mathrm{~m} \end{aligned}$ 1999Q13	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \mathrm{M} \end{array}$
29.	a) volume of hemisphere $\begin{aligned} & 1 / 2 \times 4 / 3 \times 22 / 7 \times 5.2^{3} \\ & 10.4: 10.4: 11: h-H-3 h \end{aligned}$ Big cone V1 $=1 / 3 \times 22 / 7 \times 5.2^{2} \times h$ Small cone $V_{2}=1 / 3 \times 22 / 7 \times\left(\frac{5.2}{3}\right) \times h$ $\begin{aligned} & \mathrm{V} 1-\mathrm{V}_{2}= \frac{1}{2} \times \frac{22}{7} \times 5.2^{2} \times\left(3-\frac{1}{9}\right) \mathrm{h} \\ &=\frac{1}{2} \times \frac{22}{7} \times 5.2^{2} \times\left(\frac{26}{9}\right) \mathrm{h} \\ & \frac{26}{9} \mathrm{~h}=10.4 \\ & \mathrm{H}=\frac{10.4 \times 9}{26}=3.6 \end{aligned}$ Therefore height of the frustum $=2 \mathrm{~h}=7.2 \mathrm{~cm}$	M1 M1 M1 A1

	$\begin{aligned} & \text { b) } \mathrm{L}=3.62+\frac{5.2^{2}}{3}=3.995 \\ & \mathrm{~L}=\sqrt{10.8^{2}+5.2^{2}=11.98} \\ & \text { Area }=\pi \mathrm{r}^{2}+\pi \mathrm{RL}-\pi \mathrm{rl} \\ & 22 / 7 \times 3 \times \frac{22}{7} \times 5.2^{2} \times \frac{11.98}{7} \\ & \frac{-22}{7} \times \frac{5.2}{3} \times 3.995 \\ & =9.429+195.8-21.76 \\ & =183.469 \\ & =183.5 \mathrm{~cm}^{2} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \\ \text { A1 } \\ 8 \mathrm{M} \end{array}$
30	$\begin{aligned} & \text { Area of rectangle }=19.5 \times 16.5 \mathrm{~cm} \\ & =321.75 \mathrm{~cm}^{2} \\ & \text { Area of } 4 \text { triangles }=1 / 2 \times 6 \times 4.5 \times 4 \\ & =54 \mathrm{~cm}^{2} \\ & \begin{aligned} & \text { Area of octagon }=321.75-54 \\ &=267.75 \mathrm{~cm}^{2} \\ & 2000 Q 9 \end{aligned} \end{aligned}$	
31	a) i) $\mathrm{A}=22 / 7 \times 4.2 \times 4.2=5.44 \mathrm{~cm}^{2}$ ii) Let standing length cone be L $\begin{aligned} & \mathrm{L}-8-\underline{3.5} \\ & \mathrm{~L} \end{aligned} \frac{1.2}{} \text { or equivalent }$ $\mathrm{L}=48 \mathrm{~cm}$ Curved area of frustum $22(4.2 \times 48-3.5 \times 40)$ $193.6 \mathrm{~cm}^{2}$ iii) hemispherical surface area $\begin{aligned} & =\frac{1 \times 4}{2} \times \frac{22}{7} \times 3.5 \times 3.5 \\ & =77 \mathrm{~cm}^{2} \end{aligned}$ b) $\begin{aligned} & =81.51: 326.04=1: 4 \\ & \text { Ratio of lengths }=1: 2 \\ & \text { Radius of base }=\frac{4.2}{2} \\ & =2.1 \mathrm{~cm} \end{aligned}$ 200Q20	B1 M1 A1 M1 A1 M1 A1 8 M
32.	$\begin{aligned} \mathrm{A} & =1 / 2 \times 5 \times 5 \sin 120^{0} \\ & =1 / 2 \times 5 \times 5 \times 0.866 \\ & =10.825 \end{aligned}$ 2000Q3	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$

38	$\begin{aligned} & \mathrm{H}=12 \sin 60=10.39 \\ & \mathrm{AD}=(12 \cos 60) \mathrm{X} 2+4=16 \\ & \\ & \text { Area }=(1 / 2 \times(4+16) 10.39 \\ & \quad=103.9 \times 2 \\ & \quad=207.8 \mathrm{~cm}^{2} \end{aligned}$	M1 A1 3M
39	$\begin{aligned} & \mathrm{x} \text { section area }=22 / 7\left(4^{2}-3^{2}\right) \mathrm{cm} \\ & \text { volume }=22 / 7 \times 7 \times 0.2 \mathrm{~cm}^{2} \\ & 4.4=\mathrm{cm}^{2} \end{aligned}$ 2002 Q11	M1 A1 2M
40	$\begin{aligned} & 1 / 2 \times 14 \times 8 \sin \theta=28 \sin \theta=\frac{28}{56}=\frac{1}{2} \\ & \theta=30^{\circ} \text { or } 150^{\circ} \\ & \text { 2003Q10 } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & 2 \end{aligned}$
42	$4 x+2\left(\frac{3 x}{2}\right)=21$ $7 x=21$ $\mathrm{X}=3$ width is 3 cm	
43	$\begin{aligned} & \text { a). Ext } \mathrm{d}=11 \mathrm{~cm} \text { or } \mathrm{r}_{1}=5.5 \mathrm{~cm} \\ & \text { Int. } \mathrm{d}=9 \mathrm{~cm} \text { or } \mathrm{r}_{2}=4.5 \mathrm{~cm} \\ & \text { Volume }=\pi\left(\mathrm{r}^{2}-\mathrm{r}^{2}\right) \times 600 \mathrm{~cm} \\ & =3.142\left(5^{2}-5-2-4.5^{2}\right) \times 600 \mathrm{~cm} \\ & =18852 . \\ & \quad 2003 Q 13 \end{aligned}$	M1 M1 A1 3 M
44	a). Volume of milk $\begin{gathered} 3 / 4(1.7 \mathrm{mx} 1.4 \mathrm{~m} \times 2.2 \mathrm{~m}) \\ =3.927 \mathrm{~m}^{2} \end{gathered}$ b). i).Volume of each $\begin{aligned} & 1 / 3 \times 1 / 2 \times 16 \times 16 \sin 600 \times 13.6 \\ & =1 / 3 \times 1 / 2 \times 256 \times 0.866 \times 13.6 \\ & =502.5 \mathrm{~cm}^{2} \\ & \quad \text { in } 2 \mathrm{sf}=500 \mathrm{~cm}^{3} \end{aligned}$ ii). Number of full packets	M1 A1 M1 M1 A1 B1

41	Area Δ face $=1 / 2 \times 6 \times 6 \times \sin 60^{0}$ $=18 \times 0.866$ $=15.59$	M1
	Total surface are $=(2 \times 15.59)+3 \times 6 \times 10)$ $=31.18+180$	M1
		M1
	$211.18 \mathrm{~cm}^{2}$	2 M
	$2003 Q 10$	

	$\frac{3.927}{502.5} \times 10^{6} \times 25=7814 \times 25$ 1. $7814 \times 25=195350-3.927 \times 106$ 502.5 2. $195350=7814 \times 25-3.926 \log$ used 3. 195272=7811x15 - altitude correctly or heroes formula (13.86) 4. $195400=7816 \times 25$-when 502.4 is used 5. 195225-using 13.86 or heroes formula 3.926 (7809×25) 6. $195300=\frac{3.926}{502.5} \times 10^{6}=7812 \times 25$	M1 A1 8 M
45.	$\begin{aligned} & \text { S.A }=1 / 2\left(4 \pi^{2}\right)+\pi \mathrm{r}^{2} 75 \pi \\ & \mathrm{r}^{2}=\frac{75 \pi}{3 \pi}=25 \\ & \mathrm{r}=5 \\ & \mathrm{v}=1 / 2\left(\frac{4}{3} \pi \times 5^{3}\right) \\ & =88 \frac{1}{3} \pi \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 4 \text { M } \end{aligned}$
46	a) Let $<$ QSE $=\theta$ $4^{2}=5^{2}+8^{2}-2 \times 5 \times 8 \cos \theta$	M1

	$\begin{aligned} & \operatorname{Cos} \theta=\frac{89-16}{80}=\frac{73}{80}=0.9125 \\ & \quad \theta=24^{0} 9 \\ & 24^{0} 8 \\ & 24^{0} .14 \end{aligned} \quad \begin{aligned} & 16.38 \mathrm{~cm}^{2} \\ & \text { a) Area of PQS } \\ & =1 / 2 \times 8 \times 10 \sin 2409 \\ & =40 \times 0.4091 \\ & =10.825 \mathrm{~cm}^{2} \\ & =16.36 \mathrm{~cm}^{2} \end{aligned}$	A1
47.	a) Area of hemispherical part $\begin{aligned} & =1 / 2 \times 48 \mathrm{r}^{2} \\ & =2 \times 22 / 7 \times 35 \times 35 \\ & =7700 \mathrm{~cm}^{2} \end{aligned}$ b) Slant height for original / zone $\begin{aligned} & \mathrm{L}=35 \\ & \mathrm{~L}-60=14 \\ & \mathrm{~L}=200 \mathrm{~cm} \end{aligned}$ C)Surface area of frustum $\pi \mathrm{RL}=\pi \mathrm{rl}$ $\begin{gathered} \mathrm{Ni}=22 / 7 \times 35 \times 100-22 / 7 \times 14 \times 40 \\ =11000-1760 \\ =9240 \mathrm{~cm}^{2} \end{gathered}$ Total surface area $\begin{gathered} =7700+9240+22 / 7 \times 14^{2} \\ =7700+9240+616 \\ =17556 \mathrm{~cm}^{2} \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
48.	$\mathrm{AD}=\sqrt{7.5^{2}+4^{2}}$	M1 M1

\begin{tabular}{|c|c|c|}
\hline \& $$
\begin{array}{ll}
& =72.25 \\
& =8.5 \\
\text { Perimeter }=8.5 \times 4 & \\
& =34 \mathrm{~cm}
\end{array} \quad \mathbf{2 0 0 5 Q 1 9} 9
$$ \& A1

\hline 49. \& Area $\mathrm{A}=\pi \mathrm{r}^{2}$
$$
\begin{aligned}
& 22 / 7 \times 4.2 \times 4.4 \\
& =55.44 \mathrm{~cm}^{2}
\end{aligned}
$$
$$
\begin{aligned}
& \text { Area B }=2 \pi \mathrm{rh} \times 1 / 2 \\
& =22 / 7 \times 4.2 \times 150 \\
& =1980 \mathrm{~cm}^{2} \\
& \text { Area C }=2 \times 4.2 \times 150 \\
& =1260 \mathrm{~cm}^{2} \\
& \text { Total area }=55.44+1980+1260 \\
& =3295 . \mathrm{cm}^{2}
\end{aligned}
$$ \& B1

M1

M1
A1

\hline 50. \& | Cross sectional area $=1 / 2 \mathrm{bh}+1 \mathrm{xb}$ $=1 / 2 \times 25 \times 1.8+25 \times 1=47.5 \mathrm{~m}^{2}$ |
| :--- |
| Volume $=47.5 \times 10=475 \mathrm{~m}^{2}$ |
| b). i). volume $\mathrm{A} 1 / 2 \times 25 \times 1.8 \times 10$ $=225$ |
| Volume B $=10 \times 1 \times 25=250$ |
| Total volume $=250+225=475 \mathrm{~m}^{3}$ |
| ii). $225 \mathrm{~m} 3=9$ hours |
| Therefore $250 \mathrm{~m} 3=\underline{250 \times 9}$ | \& B1

\hline
\end{tabular}

	225 $=10$ hours $2005 Q 19$	B2 A1
51.	a). Height $=\sqrt{3^{2}-1.8^{2}}=2.4$ $\mathrm{x}-$ sectional area $=9.12 \mathrm{~cm}^{3}$ x - sectional area \times height $=\frac{1}{2} \times 2.4 \times(2+5.6) \times 8$ Volume $=9.12 \times 8$ $=72.96 \mathrm{~cm}^{3}$ b). Mass mg $\begin{aligned} & =72.96 \times 5.75 \\ & =419.52 \mathrm{~g} \end{aligned}$ c). (i) $246.24=$ cross section Area $\times 8$ Cross section Area $=$ $\frac{246.24}{30} \times 30.85 \mathrm{~cm}^{2}$ (ii) $\frac{419.52 \mathrm{~g}}{246.24 \mathrm{~cm}^{2}} \times \frac{2}{5}=4.259 \mathrm{~g} / \mathrm{cm}^{3}$ Area of solution $\begin{aligned} & =9.12 \times 2.25 \\ & =20.52 \mathrm{~cm}^{2} \end{aligned}$ 2006Q19	M1 A1 M1 A1 M1 A1 10 M
52.	a). Slant height $\begin{aligned} \mathrm{L} & =\sqrt{4^{2}+3^{2}} \quad=5 \mathrm{~cm} \\ \mathrm{~A}_{\mathrm{c}} & =\pi \mathrm{rl} \\ & =3.142 \times 3 \times 5 \\ & =47.13 \mathrm{~cm}^{2} \\ \mathrm{~A}_{\mathrm{cs}} & =\pi D h \\ & =3.142 \times 6 \times 8 \\ & =150.82 \mathrm{~cm}^{2} \\ \text { As } & =\frac{1}{2} 4 \pi r^{2}=2 \pi r^{2} \\ & =2 \times 3.142 \times 9 \\ & =56.56 \mathrm{~cm}^{2} \end{aligned}$ b). $15 \mathrm{~cm}: 600 \mathrm{~cm}$ $\begin{gathered} 1: 40 \\ \text { a.s. } \mathrm{f}=\frac{1}{1600} \end{gathered}$ Area of container	B1 M1 M1 A1 B1 B1 M1

	$\begin{aligned} & 1600 \times 254.5 \mathrm{~cm}^{2} \\ & \frac{1600 \times 254.5}{1000} \\ & =40.72 \mathrm{~m}^{2} \\ & \text { Paint needed } \\ & \frac{40.72}{20} \times 0.75 \\ & \quad=1.527 \text { litres } \\ & \text { Toal }=24.13+9.05+2.54 \mathrm{ml} \\ & \quad=40.73 \mathrm{~m}^{2} \end{aligned}$	M1 M1 A1 10 m
53.	$\begin{aligned} & \text { Volume of plate }=\frac{1.05}{8.4} \times 100 \\ & =125 \mathrm{~cm}^{3} \\ & L^{2}=\frac{125 \mathrm{~cm}}{0.2}=625 \\ & \mathrm{~L}=\sqrt{625}=25 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 3 \text { M } \end{aligned}$
54.	$\begin{aligned} & \operatorname{Cos} \theta=\frac{2.5}{5}=05 \\ & \theta=60^{\circ} \times 2 \end{aligned}$ surface under water $\begin{aligned} & =\frac{2 \times 60}{360} \times \pi \times 10 \times 12 \\ & =125.7 \end{aligned}$	$\begin{aligned} & \hline \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 4 \text { M } \end{aligned}$
55.	a). I.S.F $=\sqrt{\frac{20}{45}}=\sqrt{\frac{4}{9}}=\frac{2}{3}$ Therefore I.S.F $=8 / 27$ Capacity of smaller container $\frac{8}{27} \times 0.945$ 0.281 or $280 \mathrm{ml}\left(280 \mathrm{~cm}^{3}\right)$ b). let depth be h $\begin{aligned} & 45(13-h)=20 h \\ & 585=65 \mathrm{~h} \\ & H=9 \end{aligned}$ c). amount in smaller container	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$

	$\begin{aligned} & 1 / 5 \times 9 \times 45+20 \times 9 \\ & =261 \end{aligned}$ Height in smaller container $261 / 20=13.05 \mathrm{~cm}$ Difference $13.05-4 / 5 \times 9$ $=13.05-7.2$ $=5.85$ 2007 Q22	M1 A1 $2 \mathrm{M}$
56.	$\begin{aligned} & 23.50+(7 \mathrm{~h} 15 \text { minutes }+45 \\ & \text { minutes }+5 \mathrm{~h} 40 \text { minutes }) \\ & =1330 \mathrm{~h} \\ & =1.30 \mathrm{pm} \text { on Monday } \end{aligned}$ 2008Q4	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & 2 \mathrm{M} \end{aligned}$
57.	$\begin{aligned} \text { Volume of liquid } & =\underline{384} \\ \text { Height of liquid } & =640 \times 3.22 \\ & =19.89 \end{aligned}$	M1 M1 A1 3 M
58.	$\begin{aligned} & \text { Volume of sphere }=4 / 3 \pi \times 4.23 \\ & \text { Side of cube }=34 / 3 \pi \times 4.23 \\ &=6.77 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 3 \mathrm{M} \end{aligned}$
59.	Area of rectangular part $\begin{aligned} & =2 \times 5.2 \times \pi \times 18 \\ & =187.2 \pi \end{aligned}$ Area of circular parts $\begin{aligned} & =2 \times 5.22 \times \pi \\ & =54.08 \pi \\ \pi & (187.2+54.08)=241.28 \pi \end{aligned}$	M1 M1 A1 3 M
60.	a). $\begin{aligned} & 1 / 3 \times 22 / 7 \times 21 \times 21 \times 30 \\ & =13860 \end{aligned}$ b). $\begin{aligned} & \text { i). } \mathrm{r} / 21=36 / 30 \\ & \mathrm{r}=\frac{36 \times 21}{30} \\ & =25.2 \end{aligned}$ ii). $1 / 3 \times 22 / 7 \times 25.2 \times 25.2 \times 36$	M1 A1 M1 A1

	$\begin{aligned} & =23950.08 \\ & =23950.08-13860 \\ & =10090.08 \mathrm{~cm}^{3} \end{aligned}$ iii) $\begin{aligned} \frac{4}{3} & \times \frac{22}{7} \times r^{3}=10090.8 \\ \mathrm{r}^{3} & =\frac{10090.08 \times 21}{4 \times 22} \\ \mathrm{R} & =3 \sqrt{2407.86} \\ & =13.40 \mathrm{~cm} \end{aligned}$ 2008Q22	M1 M1 A1 M1 M1 A1 10 M
61.	$\begin{aligned} \mathrm{AC} & =\sqrt{85^{2}-75^{2}}=1600 \\ & =40 \end{aligned}$ Area of quad ABCD $\begin{aligned} & =1 / 2 \times 40 \times 75+ \\ & \sqrt{75(75-60)(75-50)(75-40)} \\ & =1500+\sqrt{984375} \\ & =1500+992 \\ & =2492 \mathrm{~m}^{2} \\ & =0.25 \mathrm{ha} \\ & \end{aligned}$	M1 M1 A1 B1 4 M
62.	Time between Monday 0545 h and Friday 1945h $\begin{aligned} & =4 \times 24+14 \\ & =110 \mathrm{~h} \end{aligned}$ Time lost $=0.5 \times 110=55$ minutes Time shown in 12 hours system $\begin{aligned} 1945-55 & =1850 \mathrm{~h} \\ & =6.50 \mathrm{p} . \mathrm{m} \end{aligned}$	M1 M1 A1 3 M
63.	$\begin{aligned} & 2 \pi r^{2}+2 \pi r h=154 \\ & r=h \\ & 2 \pi r^{3}+2 \pi r^{2}=154 \\ & 4 \pi r^{2}=154 \\ & r=\sqrt{\frac{154}{4 \times 3.142}} \\ & =3.500 \\ & \text { diameter }=2 r=3.500 \times 2 \end{aligned}$	M1 M1 A1

	$=7.00$ (s dp) 2010Q14	3
64.	Accept $2 / 3=0.666$ re-use of decimals Apply Pa- if not 4 sig figs Let OC = r $\begin{aligned} & .: \mathrm{CD}=\frac{2}{3} r \text { and } \mathrm{EF}=\frac{2}{3} r+5 \\ & \frac{2}{3} r+\frac{2}{3}(r+5)+5+5=24 \\ & \frac{4}{3} r=10 \frac{2}{3} \\ & \quad \mathrm{r}=8 \end{aligned}$ $2010 Q 15$	M1 M1
65	(a) (i)internal volume of box $=150 \times 80 \times 40 \mathrm{~cm}^{3}$ $=480,00 \mathrm{~cm}^{3}$ external volume of bos $\begin{aligned} & =152 \times 82 \times 42 \mathrm{~cm}^{3} \\ & =523488 \mathrm{~cm}^{3} \end{aligned}$ Volume of wood $\begin{aligned} & =(523488-480,000) \mathrm{cm}^{3} \\ & =43488 \mathrm{~cm}^{3} \end{aligned}$ (ii) $\begin{aligned} \text { mass of box } & =\frac{43488 \times 0.6}{1000} \\ & =26092 \\ & =26.1 \mathrm{~kg} \end{aligned}$ (b) (i0 no of tins $=\frac{150}{10} \times \frac{80}{10} \times \frac{40}{10}$ $=240$ (ii) total mass $\begin{aligned} & =26.1+\left(\frac{240 \times 120}{1000}\right) \\ & =54.9 \mathrm{~kg} \end{aligned}$ $2010 Q 18$	
66.	$\begin{aligned} & \sqrt{11.252^{2}-6.75^{2}}-9 \\ & \quad \text { Perimeter }=2(9+6.75) \\ & \quad=31.5 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & 2 \end{aligned}$
67	Internal dimensions:	B1

	$\begin{aligned} & 40,20 \text { and } 15 \\ & \text { Volume unoccupied } \\ & =40 \times 20 \times 15-8000=4000 \\ & \text { Height unoccupied } \\ & \qquad \begin{array}{l} \frac{4000}{40 \times 20} \\ =5 \mathrm{~cm} \end{array} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 4 \end{aligned}$
68.	(a) (i) surface area of the solid $\begin{aligned} & =\pi \times 6 \times 10+\frac{4}{2} \times \pi \times 6^{2} \\ & =414.69 \end{aligned}$ (ii) height of the cone: $=\sqrt{100-36}=8$ Therefore: volume of the solid $\begin{aligned} & =1 / 3 \times \pi \times 6^{2} \times 8+1 / 2 \times 4 / 3 \times \pi \times 6^{3} \\ & =753.98 \mathrm{~cm}^{3} \end{aligned}$ (b) mass of the solid in kg $\begin{aligned} & =\frac{1.3 \times 753.98}{100} \\ & =0.9802 \text { to } 4 \text { significant to s.f } \end{aligned}$	M1 M1 A1 B1 M1 M1 A1 M1 M1 A1

69.	$\frac{24}{2}=\frac{1}{2} \times 8 \times x \sin 30^{\circ}$ $x=\frac{12}{4 \sin 30}=6 \mathrm{~cm}$	M1 M1 A1
	$\text { Perimeter }=2(6+8)=28$	
70.	$\begin{aligned} & \text { Volume of solid } \\ & =\frac{1}{3} \times \frac{22}{7} \times 10.5^{2} \times 15-\frac{22}{7} \times 3.5^{2} \times 8 \\ & =1732.5-308 \\ & =1424.5 \mathrm{~cm}^{3} \end{aligned}$ 2012 Q15	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \\ \text { A1 } \\ 3 \\ \hline \end{gathered}$
$71 .$ (a)	$\|A B\|=\sqrt{169-25}=12$	B1
(b)	$\begin{gathered} 2 \times 5 \times 12+2 \times 5 \times 15+2 \times 12 \times 15 \\ =630 \mathrm{~cm}^{2} \end{gathered}$	M1 M1 A1
(c)	Volume $=5 \times 12 \times 15 \mathrm{~cm}^{3}$	M1
	$\begin{aligned} \text { Mass } & =7.6 \times 512 \times 15 \\ & =6840 \mathrm{gm} \\ & =\underline{6840} \\ & 1000 \\ & =6.84 \mathrm{~kg} \end{aligned}$	M1 M1 A1
(d)	$\frac{150 \times 120 \times 100 \mathrm{~cm}^{3}}{15 \times 12 \times 5 \mathrm{~cm}^{3}}$	M1
	$=2000$	
	2012 Q 18	10

