NAME \qquad INDEX NUMBER

SCHOOL \qquad DATE

INTEGERS

	2009 Q1 P1 A watch which loses a half minutes every hour was set to reach the correct time at 05 45h on Monday. Determine the time in the 12 hour system, the watch will show on the watch will show on the following Friday at 1945h. (3 marks)					

		Working space
9.	2011 Q4 P1 A square room is covered by a number of whole rectangular slabs of sides 60 cm by 42 cm . Calculate the least possible area of the room in square metres.	
10.	2011 Q14 P1 (a) Express 10500 in term of its prime factors (1 mark) (b) Determine the smallest positive number P such that 10500p is a perfect cube. (2 marks)	
11.	2012 Q6 P1 Three bells rang at intervals of 9 minutes, 15 minutes and 21 minutes. The bells will ring together at 11.00 p.m.Find the time the bells had last rang together (3 marks)	

INTEGERS MARKING SCHEME

NO	SOLUTION	MARKS
1.	a) $\begin{aligned} & \frac{-8 \div 2+12 \times 9-4 \times 6}{56 \div 7 \times 2} \\ &=-4+108-24 \\ & 16 \\ &= \frac{80}{16} \\ &=\end{aligned}$	M1 M1 M1 2
2.	$\begin{gathered} \frac{28+18}{-2}-\frac{15-12}{3} \\ =-23-1 \\ =-24 \end{gathered}$ 2000Q1	M1 M1 A1 3 marks
3.	$\begin{aligned} &+4 \times 4-(-20) \\ & \hline-6 \times \underline{6}+(-6) \\ &= \frac{4 \times 4+20}{-6 \times 2-6} \\ &= \frac{36}{-18} \end{aligned}$ 2002Q1	B1B1 A1 3 marks
4.	a) 7532 b). 500 2006Q2	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { 3M } \end{aligned}$
5.	$\begin{gathered} \frac{+(5) \times(-8)-(-6)}{-3+(-8) \div 2 \times 4} \\ =\frac{-8+40+6}{-3+-4 \times 4} \\ =\frac{38}{-19} \\ =-2 \end{gathered}$	2 marks
6.	The LCM of 3 and 5 is 15 minutes In 15 minutes 8 customers are served ; Total time $=\frac{200 \times 15}{8}$ $=375$ minutes 2009Q7	B1 M1 A1 3 marks
7.	$\begin{array}{ll} \frac{-2(5+3)-9 \div 3+5}{-3 \times-5+(-2) \times 4} & =-\frac{14}{7} \\ \quad=-2 \end{array}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$

8.	No of oranges for Friday $1948-(750+750+240)=208$ No of oranges for Saturday $208+560=768$ $\begin{aligned} \text { Amount } & =\operatorname{sh} .8 \times 768 \\ & =\text { sh. } 6144 \end{aligned}$ $2010 Q 11$	
9	$\begin{aligned} & 60=22 \times 3 \times 5 \\ & 42=2 \times 3 \times 7 \end{aligned}$ Side of the pavement LCM $=22 \times 3 \times 5 \times 7$ Least area $=4.2 \times 4.2 \mathrm{~m}=17.64 \mathrm{~m}^{2}$ 2011 Q4	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { B1 } \\ & 3 \end{aligned}$
10.	a) $10,500=2^{2} \times 3 \times 5^{3} \times 7$ b) $\mathrm{p} \times 10,500=2^{2} \times 3^{3} \times 5^{3} \times 7^{3}$ smallest value of $p=2 \times 3^{3} \times 7^{2}$ $\mathrm{p}=882 \mathrm{~cm}$ $2011 Q 14$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \\ & 3 \end{aligned}$
11.	LCM of 9, 15 and 21$32 \times 5 \times 7=315$ minutesLast time ringing together11.00 2300 $\frac{5.15}{5.45 \text { p.m }}$ $\frac{515}{1745 \mathrm{hrs}}$ $\mathbf{2 0 1 2} \mathbf{Q 6}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline 3 \end{aligned}$

