\qquad

APPLIED GEOMETRY AND BEARINGS

		Working space
3.	$1995 \text { Q4 P1 }$ Manyatta village is 74 km North West of Nyangata village. Chamwe village is 42 km west of Nyangate. By using an appropriate scale drawing, find the bearing of Chamwe from Manyatta (2 marks)	
4.	1995 Q21 P2 A part B is on a bearing of 080° from a port A and at a distance of 95 km . A submarine is stationed at a port D , which is on a bearing of 200° from AM and a distance of 124 km from B. A ship leaves B and moves directly southwards to an island P , which is on a bearing of 140° from A . The submarine at D on realizing that the ship was heading from the island P , decides to head straight for the island to intercept the ship Using a scale 0 f 1 cm to represent 10 km , make a scale drawing showing the relative positions of $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{P}$. (2 marks) Hence find (i) The distance from A to D (2 marks) (ii) The bearing of the submarine from the ship was setting off from B (iii) The bearing of the island P from D (1 mark) (iv) The distance the submarine had to cover to reach the island P (2 marks)	

		Working space
5.	1996 Q20 P2 Four towns R, T K and G are such that T is 84 km directly to the north of R, and K is on a distance of 295° from R at a distance of 60 km . G is on a bearing of 340° from K and a distance of 30 km . Using a scale of 1 cm to represent 10 km , make an accurate scale drawing to show the relative positions of the towns. Find: (a) the distance and the bearing of T from K (2 marks) (b) the distance and the bearing of G from T (2 marks) (c) the bearing of R from G (1 mark)	
6.	1997 Q23 P2 Two aeroplanes, S and T , leave airport A at the same time, S flies on a bearing of 060° at $750 \mathrm{~km} / \mathrm{h}$ while T flies on a bearing of 210° at $900 \mathrm{~km} / \mathrm{h}$. (a) Using a suitable scale, draw a diagram to show the positions of the aeroplanes after two hours. (b) Use your diagram to determine (i) the actual distance between the two aeroplanes (2 marks) (ii) the bearing of T and S (1mark) (iii) the bearing of S and T (1mark)	

		Working space
7.	1998 Q22 P2 Two aeroplanes P and Q leaves an airport at the same time. P lies on a bearing of 240° at $900 \mathrm{~km} / \mathrm{h}$ while Q flies due east at $750 \mathrm{~km} / \mathrm{h}$. (a) Using a scale of 1 cm to represents 100 km , make a scale drawing to show the position of the aeroplane after 40 minutes. (b) Use the scale drawing to find the distance between the two aeroplane after 40 minutes. (c) Determine the bearing (i) P from Q (ii) Q from P	
8.	2002 Q22 P2 Using the scale: 1 cm represents 10 km , construct a diagram showing the positions of $\mathrm{B}, \mathrm{C}, \mathrm{Q}$ and D . Determines the: i) Distance between B and C ii) Bearing of D from B.	

		Working space
9.	2003 Q19 P2 A ship leaves port p for port R though port $\mathrm{Q} . \mathrm{Q}$ is 200 km on a bearing of 220° from P.R is 420 km on the bearing of 140° from from Q . a) Using the scale 1:4,000,000, draw a diagram, showing the relative positions of the three ports P,Q, and R. b) By further drawing on the same diagram, determine how far R is to the west of p c) If the ship has sailed directly from P to R at an average speed of 40 knots, find how long it would have taken to arrive at R . (Take 1 nautical mile $=1.853 \mathrm{~km}$)	
10.	2004 Q19 P2 For electricity posts, A, B, C, and D stand on a level ground such that B is 21 m on a bearing of 060° from A, C, is 15 m to the south of B and D is 12 m on a bearing of 140° from A. (a) (i) Using scale of 1 cm of Icm to represents 3 metres, draw a diagram to show the relative positions of the posts (ii) Find the distances and the bearing of C from D (b) The height of the post at A is 8.4 m . On a separate scale drawing, mark and determine the angle of depression of the foot of the post at C from the top of the top of the post at A.	

		Working space
11.	2009 Q23 P1 Three points P, Q and R are on a level ground Q is 240 m from P on a bearing of $230^{\circ} R$ is 120 m to the east of P. (a) Using a scale of 1 cm to represent 40 m , draw a diagram to show the positions of P, Q and R in the space provided below. (2 marks) (b) Determine (i) the distance of R from Q ; (2 marks) (ii) the bearing of R from Q (2 marks) (c) A vertical post stands at P and another one at $\mathrm{Q} . \mathrm{A}$ bird takes 18 seconds fly directly from the top of the post at Q to the top of the post at P. Given that the angle of depression of the post at P from the top at Q is 9°, Calculate; (i) the distance to the nearest centre the bird covers; (ii) the speed of the bird in Km / h	

		Working space
12.	2010 Q20 P1 The boundaries $P Q, Q R, R S$ and $S P$ of a ranch are straight lines such that: Q is 16 km on a bearing of 040° from $\mathrm{P} ; \mathrm{R}$ is directly south of Q and east of P and S is 12 km on a bearing of 120° from R. Using a scale of 1 cm to represent 2 km .Show the above information in a scale drawing. (3marks) (a) From the scale drawing determine: (i) The distance in kilometres of P from S . (ii) The bearing of P from S .	
13.	2011 Q15 P1 Three posts x, y and z are such that y is 50 km on a bearing of 060° from X while Z is 70 km from Y and on a bearing of 300° from X . (a) Using a suitable scale, drawing a diagram to represent the above situation. (3marks) (b) Determine the distance, in km , of Z from x . (1 mark)	

		Working space
14.	$\mathbf{2 0 1 2}$ Q23 P1 Three pegs R, S and T are on the vertices of a triangular plain field. R is 300m from S on a bearing of 300^{0} and T is 450m directly south of R. (a) using a scale of 1cm to represent 60m, draw a diagram to show the positions of the pegs.	
(b) Use the scale drawing to determine: (i) the distance between T and S in metres; (2 marks) (ii)the bearing of T from S. (c)Find the area of the field, in hectares, correct to one decimal place. (4 marks)		

APPLIED GEOMETRY - BEARINGS MARKING SCHEME

1.	Scale: 1 cm rep 20 km thus $\equiv 4 \mathrm{~cm}$ and $200 \mathrm{~km} \equiv 10 \mathrm{~cm}$ Bearing of s from p is $075^{\circ} \pm\left(\right.$ or $\left.\mathrm{N} 75^{\circ} \mathrm{E}\right)$ 198908	4M		(c) $\frac{x}{360} \times \frac{22}{7} \times 2 \times 6370 \cos 36=840$ $x=\frac{840 \times 9}{11 \times 91 \times 0.8090}=9.34$ Town C longitude $=131^{0}-9.34^{0}$ $=121.66^{\circ} \mathrm{W}$ 1996Q20	
	1989Q8		6.	Bearing of 060° drawn Bearing of 210° drawn	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
2.	Scale: 1 cm rep 50 km (must be used) $\begin{gathered} \text { (i)Distance } \mathrm{AE}=8.3[\pm 0.1] \times 50 \\ =415[\pm 5] \mathrm{km} \end{gathered}$ (ii)bearing of E from $\mathrm{A}=112^{\circ} \pm$ 10[ors68] 1993Q22	8M		Distance on scale drawing Representing 1500km Representing 1800km (b) (i) Actual distance (16 ± 0.1) $\times 200$ or equivalent $=3200 \mathrm{~km}$ (ii) bearing of T from S (iii) bearing of S from T $=044^{0} \pm 1^{0}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \\ & 8 m a r \\ & \text { ks } \end{aligned}$
3.	Scale: 1 cm rep 50 km (must be used)	3M		1997Q23	
	Bearing of Chamwe from Manyatta is the angle shown by the arrow $=169 \pm 1^{\circ}$ [ors $\left.11^{0} \mathrm{E}\right]$ 1995Q4		7.	(a) 600 km and 500 km seen or used Scale used Bearing and distance of P Bearing and distance of Q $\begin{aligned} & \text { (b) } P Q=10.6 \pm 0.1 \\ & =1060 \pm 10 \mathrm{~km} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { S1 } \\ & \text { B1 } \end{aligned}$
4.	Scale: 1 cm rep 50 km (must be used)	2M		(c) (i) $254^{0} \pm 1^{0}$ (ii) 0740 ± 1^{0} 1998Q22	B1 B1 8mar ks
			8	a)	
	(i) Distance $\mathrm{AD}=4.6[\pm 5] \mathrm{X} 10=46[\pm 1]$ km (ii) bearing of D from $\mathrm{B}=240^{\circ}$ or $\mathrm{S} 60^{\circ} \mathrm{W}$ (iii) Bearing of the island P from D $=[\pm 1] 0$ $\text { [or } \left.\mathrm{S} 58^{\circ} \mathrm{E}\right]$ (iv) Distance $=12.7$ $[\pm 1] \mathrm{X} 10=127[\pm 1] \mathrm{km}$				C S1 B1
5.	(a) $131+49=180^{0}$ $\text { (b) } \begin{gathered} \frac{180}{360} \times \frac{22}{7} \times 2 \times 6370 \cos 36 \\ =16,196.18 \mathrm{~km} \end{gathered}$			$\sqrt{\text { Scale used }}$ $\sqrt{\text { Position of } B}$ $\sqrt{\text { Position of } C}$ $\sqrt{\text { Mediator of } B Q}$ or QC of BC	B1 B1 B1

\begin{tabular}{|c|c|c|}
\hline 11. \& \begin{tabular}{l}
a). Direct and distance of \(Q\) from \(P\) Direction and distance of \(R\) from \(P\) \\
b). i). Distance conversion
\[
\begin{aligned}
\& 8.5 \times 40 \\
\& =340
\end{aligned}
\] \\
ii). Northline at Q Bearing 0630 stated \\
c). i). Distance from the top of the post at \(Q\) to the top of post at \(P\)
\[
\begin{aligned}
\& \mathrm{X}=240 \text { or } \mathrm{Cos} 90=240 \\
\& =\operatorname{Cos} 90 \\
\& =243 \mathrm{~m}
\end{aligned}
\] \\
ii). Speed 4 bird
\[
\begin{gathered}
243 \times 60 \times 60 \\
\quad 1000 \times 18 \\
=48.6 \mathrm{~km} / \mathrm{h}
\end{gathered}
\] \\
2009 Q23
\end{tabular} \& \begin{tabular}{l}
R

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

B1

B1

M1

A1

B1

B1

M1

A1

M1

A1

10

marks
\end{tabular}

\hline 12. \& ```
b) i) Distance of P from $s=10.8+0.1 \mathrm{~cm}$
ii) $<$ PSN $=74+10$
earing of P from $S=286+10$
c) area of $\mathrm{PQR}=1 / 2 \times 10.2 \times 12.2$
$=63.44 \mathrm{~km}^{2}$
Area of PRS $=1 / 2 \times 10.2 \times 2 \sin -60^{0}$
$=30.6 \mathrm{~km} 2$
Area of ranch PQRS
$=62.22+30.6$
$=92.82 \mathrm{~km}^{2}$
2010Q20

``` & B1
B1
B1
A1
M1
M1
B1 \\
\hline
\end{tabular}
(ii)```

