\qquad
\qquad

Date

\qquad

PHYSICS

Paper 1(Theory)
TIME: 2 HOURS

PHYSICS
Paper 1(Theory)
Time: 2 Hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
- Sign and write the date of the examination in the spaces provided above
- This paper consists of TWO sections \boldsymbol{A} and \boldsymbol{B}.
- Answer all the questions in section \boldsymbol{A} and \boldsymbol{B} in the spaces provided
- All working MUST be clearly shown.
- Mathematical tables and electronic calculators may be used.
- Take: Acceleration due to gravity, $g=10 \mathrm{~m} / \mathrm{s}^{2}$, Density of water $1 \mathrm{~g} / \mathrm{cm}^{3}$, S.H.C. of water is $4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$.

FOR EXAMINER'S USE ONLY

Section	Question (s)	Max. Score	Candidates Score	
\mathbf{A}	$1-11$	$\mathbf{2 5}$		
$\mathbf{y y y y}$	\mathbf{B}	12	$\mathbf{1 1}$	
	13	$\mathbf{1 1}$		
	14	$\mathbf{9}$		
	15	$\mathbf{1 3}$		
16	$\mathbf{1 1}$			

This paper consists of 9 printed pages. Candidates should check the question
Paper to ensure that all the pages are printed as indicated and no questions are missing

SECTION A (25 MARKS)

Answer ALL questions in this section in the space provided.

1. The mass of the solid cylinder shown in the diagram below is 300 g .

Determine the density of the material.
\qquad
\qquad
\qquad
2. A steel needle when placed carefully on water can be made to float. When a detergent is added to the water it sinks. Explain this observation.
\qquad
\qquad
\qquad
3. A pipe of radius 0.4 cm is connected to another pipe of radius 0.6 cm . If water flows in the wider pipe at a speed of $5 \mathrm{~ms}^{-1}$. What is the speed in the narrower pipe?
\qquad
\qquad
4. A block of copper of mass 2 kg and specific heat capacity $400 \mathrm{~J} / \mathrm{kgK}$ initially at $81^{\circ} \mathrm{C}$ is immersed in water at $20^{\circ} \mathrm{C}$. If the final temperature is $21^{\circ} \mathrm{C}$, determine the mass of water.
\qquad
\qquad
\qquad
5. State how heat losses by convection and radiation are minimized in a thermos flask.
\qquad
\qquad
6. A body of mass 25 kg moving with uniform acceleration has an initial momentum of $60 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ and after 10 seconds the momentum is $90 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. What is the acceleration of the body?
7. State Newton's first law of motion.
\qquad
\qquad
\qquad
8. The diagram below shows a spinning ball as it moves through air in the direction shown.

Draw streamlines of air around the ball and show the direction in which it spins such that an upward force is created.
\qquad
\qquad
9. A certain solid of volume $60 \mathrm{~cm}^{3}$ displaces $20 \mathrm{~cm}^{3}$ of a liquid when floating. If the density of the liquid is $600 \mathrm{kgm}^{-3}$, determine the density of the solid.
\qquad
\qquad
\qquad
10. When a body of mass 0.25 kg is acted on by a force, its velocity changes from $5 \mathrm{~m} / \mathrm{s}$ to $7.5 \mathrm{~m} / \mathrm{s}$. determine the work done by the force.
\qquad
\qquad
\qquad
11. How much work is done in stretching a spring of spring constant $25 \mathrm{~N} / \mathrm{m}$ when length is increased from 1 cm to 2 cm ?

SECTION B (55 MARKS)

Answer ALL questions in this section in the space provided

12. a) Define specific latent heat of vaporization.
b) Steam at $100^{\circ} \mathrm{C}$ was passed for some time into ice at $0^{\circ} \mathrm{C}$. At the end, temperature of the water obtained was $52^{\circ} \mathrm{C}$ and its mass 2 g . Calculate;
I. The heat lost by steam
\qquad
\qquad
\qquad
II. Mass of the ice used.
\qquad
\qquad
\qquad
c) Other than using steam, describe briefly using a diagram how you would experimentally determine the latent heat of fusion of ice.
d) Give a reason why it is not advisable to melt ice directly using an electric heating coil. (1 mk)
13. The figure below shows an inclined plane of length 5 m .

a) Find the velocity ratio of the inclined plane.
b) Sketch the possible arrangement of the pulleys with a velocity ratio of 4 .
c) The table below shows the readings for various masses hung from a spring balance.

Mass(kg)	0	0.02	0.4	0.6	0.8	1
Reading(mm)	120	131	141	150	162	170
Force(N)						
Extension(mm)						

I. Complete the table above.
II. Plot the graph of the force (N) against extension (mm) on the grid provided below. (4mks)

III. From the graph, determine the extension when a mass of 0.045 kg is hung from the spring
(a) State the pressure law for an ideal gas.
(b) The set up shows an arrangement to determine the relationship between temperature and pressure of a gas at constant volume.

i) Describe how the measurements are obtained in the experiment.
\qquad
\qquad
\qquad
ii) Explain how the results from the experiment can be used to determine the relationship between temperature and pressure.
\qquad
\qquad
(c) A bicycle tyre is pumped to a pressure of $2.2 \times 10^{5} \mathrm{~Pa}$ at $23^{\circ} \mathrm{C}$. After a race the pressure is found to be $2.6 \times 10^{5} \mathrm{~Pa}$. Assuming the volume of the tyre does not change, what is the temperature of the air in the tyre?
15. a) The figure below shows a circuit diagram for a device for controlling the temperature in a room.

i) Explain the purpose of the bimetallic strip.
\qquad
\qquad
ii) Describe how the circuit controls the temperature when the switch is closed.
\qquad
\qquad
b) i) Explain why bodies in circular motion undergo acceleration even when their speed is constant.
\qquad
\qquad
ii) A particle moving along a circular path of radius 5 cm describes an arc of length 2 cm every second. Determine:
I. Its angular velocity.
\qquad
\qquad
II. Its periodic time.
\qquad
\qquad
iii) A stone of mass 40 g is tied to the end of a string 50 cm long and whirled in a vertical circle at $2 \mathrm{rev} / \mathrm{s}$. Calculate the maximum tension in the string.
\qquad
\qquad
\qquad
16.

> a) State Archimedes' principle.
b) A rectangular block of cross-sectional area $0.08 \mathrm{~m}^{2}$ is immersed in a liquid of density $1200 \mathrm{~kg} / \mathrm{m}^{3}$. The top and the lower surfaces are 20 cm and 80 cm below the surface of the liquid respectively.
i. What is the upward force on the bottom surface of the block?
ii. Calculate the up thrust on the block.
(2mks)

A wooden block of mass 400 kg is floating with 20% of its volume above the water level.
Determine:
i) The force needed to submerge it completely.
ii) The density of the wood. (density of water is $1000 \mathrm{kgm}^{-3}$)

PHYSICS PAPER1 MAKING SCHEME

1. \quad Volume $=\pi r^{2} h$

$$
\begin{aligned}
= & \pi \times 0.02^{2} \mathrm{~m}^{2} \times 0.03 \mathrm{~m} \\
\text { Density }= & \mathrm{m} / \mathrm{v} \\
= & 0.3 \\
& 3.14 \times 0.02^{2} \times 0.03 \\
= & 7962 \mathrm{kgm}^{-3}
\end{aligned}
$$

2. The cohesive forces of water molecules are weaken and finally broken by the entry of the detergent molecules

- Since the detergent molecules are impure in water, the forces holding water molecules are weakened and finally broken

3. $\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
$\mathrm{A}_{1}={ }^{22} / 7 \times\left(0.4 \times 10^{-2}\right)^{2}=5.03 \times 10^{-5} \mathrm{~m}^{2}$
$\mathrm{A}_{2}={ }^{22} /_{7} \times\left(0.6 \times 10^{-2}\right)^{2}=1.13 \times 10^{-4} \mathrm{~m}^{2}$
$\mathrm{V}_{2}=15 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{1}=\underline{\mathrm{A}}_{2} \underline{\mathrm{~V}}_{2}=\frac{1.13 \times 10^{-4}}{5.03 \times 10^{-5}} \times 15$

$$
=33.7 \mathrm{~m} / \mathrm{s}
$$

4. $\mathrm{M}_{\mathrm{c}} \mathrm{C}_{\mathrm{c}} \Delta \theta=\mathrm{M}_{\omega} \mathrm{C}_{\omega} \Delta \theta$
$2 \times 400 J k g-1 \times(81-21)=$
Mw x 4200 (21-20)
$\mathrm{Mw}=\frac{800 \times 60}{4200}=11.34 \mathrm{~kg}$
Convection - having vacuum between double walls
Radiation - shinny/ silvery walls
5. $\mathrm{Ft}=\mathrm{mv}-\mathrm{mu}$
$\mathrm{Mv}=60 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$\mathrm{T}=10 \mathrm{~s}$
$\mathrm{F}=\frac{90-60}{10}=3 \mathrm{~N}$
But $\mathrm{F}=\mathrm{ma} \longrightarrow \mathrm{a}=\mathrm{f} / \mathrm{m}=3 / 25=0.12 \mathrm{~m} / \mathrm{s}$

$$
\mathrm{a}=0.12 \mathrm{~m} / \mathrm{s}^{2}
$$

7. If a body is at rest it remains at rest or if it is in motion it moves with uniform velocity until it is acted on by a resultant force. 8.

8. Mass of liquid displace $=$ density x volume

$$
=0.6 \mathrm{~g} / \mathrm{cm}^{3} \times 20 \mathrm{~cm}^{3}=12 \mathrm{~g}
$$

Law of flotation - a body displaces its own weight and $\mathrm{w}=\mathrm{mg}$ i.e
Mass of liquid displaced = mass of solid

$$
\begin{aligned}
\text { Density of solid } & =\frac{12 \mathrm{~g}}{60 \mathrm{~cm}^{3}}=1 / 5 \\
& =0.2 \mathrm{~g} / \mathrm{cm}^{3} \text { or } 200 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

10. Work done $=\Delta$ K .e.

$$
\begin{aligned}
& =1 / 2 \mathrm{mv}^{2}-1 / 2 \mathrm{mu}^{2} \\
& =1 / 2 \times 0.25 \times 7.5^{2}-1 / 2 \times 0.25 \times 5^{2} \\
& =3.92 \mathrm{~J}
\end{aligned}
$$

11. Work done $=1 / 2 \mathrm{Ke}$

$$
\begin{aligned}
& =1 / 2 / 225 \mathrm{~N} / \mathrm{m} \times 0.01 \mathrm{~m}^{2} \\
& =0.125 \times 0.01=1.25 \times 10^{-4} \mathrm{Nm}
\end{aligned}
$$

SECTION B

(a) Quantity of heat required to change the state of a liquid (1 kg) into gas at constant temperature
(b) (i) $\left(2.6 \times 10^{6}\right)+4200\left(2 \times 10^{-5}\right)=4.93 \times 10^{3} \mathrm{~J}$
(ii) $\mathrm{m}\left(3.3 \times 10^{5}\right)+4200(52-0)=4.93 \times 10^{3}$

$$
\mathrm{M}=8.9 \times 10^{-2} \mathrm{~kg}
$$

(c) Electrical method

- Switch on control and start the clock simultaneously
- Record the ammeter and the voltmeter readings I and V respectively
- When an appreciable amount of water has collected in the beaker, record its mass m and time take t Use Lf $=\mathrm{VIt} / \mathrm{m}$
(d) The melt water is a poor conductor of hear so local heating could raise the temperature slightly beyond

13. (a) Velocity ratio $=\frac{1}{\operatorname{Sin} \theta}=\frac{1}{0.8}$

$$
={ }^{10} / 8=\underline{1.25}
$$

(b)

$$
\mathrm{V} . \mathrm{R}=4
$$

Load
(c)

Force	0	2.0	40	6.0	8.0	10
Extension (mm)	0	11	21	30	42	50

Graph
(e) Extension $=22.5+-1 \mathrm{~mm}$

14 (a) Pressure of a fixed mass of gas is directly proportional to the absolute temperature provided volume is kept constant.
(b) (i)- Initial pressure and temperature noted and recorded

- The water bath is heated and in turn heats the air in the flask. The values of T and P are taken at a given intervals
- (ii) The results obtained are used to draw a graph of pressure against temperature.
- A straight line graph is obtained, if the temperature is in Kelvin, the line passes through the origin
(iii) $\underline{\mathrm{P}}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}$
$\underline{2.2 \times 10^{5}}=\underline{2.6 \times 10^{5}}$
$\mathrm{T}_{2}=76.82 \mathrm{~K}$

15. (a) (i) To make and break the contact or circuit

The strip bends and straightens when the metals contracts or expands at different rates.
(ii) When the switch is closed, current flows and heating takes place when the strip is heated, it bends a way from the contact. This disconnects the heater. When the strip cools down, it reconnects and the process continues
(b) (i) Velocity is not constant since its direction changes at every instant
(ii) (I) $\mathrm{V}=\mathrm{r} \omega=\mathrm{V} / \mathrm{r}=\frac{0.02}{0.05} \mathrm{Rads}^{-1}$
(II) $\omega=2 \pi \mathrm{f}$

$$
\begin{aligned}
& \mathrm{F}=\frac{\omega}{2 \pi} \longrightarrow \mathrm{~T}=2 \pi \\
& \frac{2 \times 3.14}{0.4}=15.71 \mathrm{~s}
\end{aligned}
$$

(III) Maximum tension $=m g+m \omega^{2} r$

$$
\begin{aligned}
& =\mathrm{mg}+\mathrm{mv}^{2} / \mathrm{r} \\
& =\frac{40}{1000} \times 10+\frac{40}{1000} \times \frac{0.02}{0.5} \\
& =3.56 \mathrm{~N}
\end{aligned}
$$

16. (a)When a body is wholly or partially immersed in a fluid, it experiences un upthrust equal to the weight of the fluid displacement
(b) (i) force on the top surface $=$ weight of fluid above the surface

$$
\begin{aligned}
& =\text { area } \times \text { pressure } \\
& =0.08 \times 0.2 \times 1200 \times 10 \\
& =192 \mathrm{~N}
\end{aligned}
$$

(ii) weight of liquid displaced $=$ upward force

$$
\begin{aligned}
& =\rho g h \\
& =0.08 \times 1200 \times 10 \times 0.8 \\
& =768 \mathrm{~N}
\end{aligned}
$$

(iii) upthrust $=768 \mathrm{~N}-192 \mathrm{~N}$

$$
=576 \mathrm{~N}
$$

(c) (i) weight of the water displaced $=4000 \mathrm{~N}$

Volume of water displace $=m / \rho$

$$
=\frac{400}{1000}=0.4 \mathrm{~m}^{3}
$$

Volume above the water surface

$$
\begin{aligned}
& =0.5-0.4 \\
& =0.1 \mathrm{~m}^{3}
\end{aligned}
$$

