Kenya Certificate of Secondary Education 2020

232/1-Physics- P1 Tuesday 15/12/2020 Time8:00am-10:00am

232/1-

PHYSICS

-Paper 1

(THEORY)

DEC. 2020

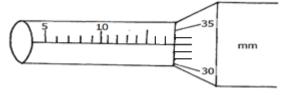
- 2 hours

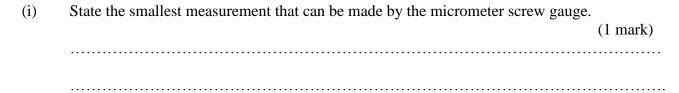
THE MASENO SCHOOL MOCK

Name Inc	lex Number
Candidate's Signature	Date

Instructions to candidates

- (a) Write your name and admission number in the spaces provided above.
- (b) Sign and write the date of the examination in the spaces provided above.
- (c) This paper consists of two sections A and B.
- (d) Answer **all** the questions in sections A and B in the spaces provided.
- (e) All working must be clearly shown.
- (f) Silent non-programmable electronic calculators may be used.
- (g) This paper consists of 8 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.
- (j) s.h.c of water = $4200 \text{Jkg}^{-1} \text{K}^{-1}$, specific latent heat of fusion of ice = $3.40 \times 10^5 \text{Jkg}^{-1}$, s.h.c of aluminium = $900 \text{Jkg}^{-1} \text{K}^{-1}$


For Examiner's Use Only


Section	Questions	Maximum	Candidate's
	(0)	Score	Score
A	1-14	25	
	15	10	
В	16	12	
	17	10	
V	18	11	
	19	12	
	Total Score	80	

1. Which branch of Physics deals with kinetic energy within matter?	(1 mark)
2. Figure 1 below shows a point object X being acted upon by two forces 4N and below. Calculate and show on the diagram, the resultant force acting on the point.	
4 N	
3. What do you understand by the term <i>angular velocity</i> ?	(1 mark)
4. A fighter plane makes a complete loop in air. Explain why the pilot remains stra	apped to his seat
without falling off.	(2 marks)
5. Two identical beakers A and B containing equal volumes of water are placed or	n a bench. The
water in A is cold while in B it is warm. Identical pieces of potassium permangana	ate are placed gently
at the bottom of each beaker inside the water. In which beaker would the spread o	f the colour be
slower? Explain.	(2 marks)
	·····

6. State two bodies naturally designed for streamline flow.	(2 marks)
	· · · · · · · · · · · · · · · · · · ·

7. The figure 2 below shows a section of a micrometer screw gauge.

(ii) The thimble of the micrometer screw gauge is rotated through two and half revolutions in the clockwise direction in order to measure the diameter of a marble. State the diameter of the marble.

(2 marks)

8. A light bulb of resistance 950 Ω operates normally on a 240V mains. Determine its power rating. (2 marks)

(1 mark)
if both are placed
(1 mark)
······································
tate the use of this
(1mark)
driven into a piece (3marks)
d by the air in the (1 mark)
i

9. Two thermometers P and Q have the same range of temperature, but P has a larger bulb holding

4. State <i>two</i> assumptions made in gas laws.			

SECTION B (55 marks)	
15.(a) State the principle of moments	(1 mark)
(b) A uniform metre rule pivoted at its centre is balanced by a force of 4.8N	
other two forces, F and 2.0N at the 66cm and 90cm marks respectively.	Calculate the force F
	(3 marks)
(c) It is easier to loosen a tight nut using a spanner with a long handle than	a shorter one. Explain
	(1 mark)
(d) A uniform metal rod of mass 100g and length 1m is kept at equilibrium	by suspending a glass
block in water as shown in <i>figure 4</i> below.	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
5cm 15cm G	_
Glass block Water	
(i) What is the distance from G to the turning point T?	(1 mark)
(1) What is the distance from 5 to the turning point 1.	(1 111111)

	The glass block is removed from water, explain why the equilibrium is not aintained.	(1 mark)
	s of the world where a plane is unable to land, free fall drops can be used to ane travelling at a speed of 80m/s and at a height of 70m releases a package Sketch the path of the falling package.	
ii)	Calculate how far the package will land from the drop zone.	(3 marks)
	elocity – time graph for a body initially moving at a velocity u before a force direction is applied to it for 5 seconds and thereafter the force F is withdra	

(ii) Determine the weight of the glass block while in water.

(3 marks)

(c) Explain the importance of safety belts to a passenger in a vehicle.	(2 marks)
(d) An object of mass 150kg moving at 20ms ⁻¹ collides with a stationary object of ma couple after collision. Determine their common velocity after collision.	ss 90kg. They (2 marks)
(e) State two applications of the law of conservation of linear momentum.	(2 marks)
	•••••
17. Consider the <i>figure 5</i> below	
400 N a=10sq.cm	
(a) Name the machine above	(1 mark)
(b) State the principle governing its functioning.	(1 mark)

(c) Determine the maximum load that can be raised by the machine if the liquid used had $1200 kg/m^3$	a density of (3 marks)
(d) A student observed that when hot water was added into a plastic bottle and the lid repimmediately, it collapsed .Explain	laced (2 marks)
(e) Which conditions must be in place for a siphon to work effectively?	(2 marks)
(f) A hippo comfortably walks on muddy river bank while a bull would get stuck yet a bu Explain.	(1 mark)
18. (a) State Archimedes' principle.	(1 mark)

a string fixed	to the bottom of the pond	l.	C	1
	5		· 	
			:====: }	
Figure	6			
i.	Indicate on the diagram	the forces acting on the	he piece of wood.	(3 marks)
ii.	Given that the density of Determine:	water is 1000 kgm ⁻³	and that of wood is 800	kgm ⁻³ ,
	I Volume of the w	ood;		(3 marks)
	II Upthrust of the w	vood;		(2 marks)
	III Tension in the str	ring.		(2 marks)
19. (a) Defino i)	the following terms. Latent heat of vaporizat	ion.		(2 marks)

(b) Figure 6 below shows a piece of wood of mass 20 kg submerged in water and held in position by

ii) Specific latent heat of vaporization.	
 (b) An aluminium tray of mass 300g containing 400g of water is placed in a refrig minutes, the tray is removed and it is found that 80g of water remains unfrozen at initial temperature of the tray and its contents was 18°C, determine the: Quantity of heat lost by the tray. 	
ii) Quantity of heat lost by the water and frozen ice.	(2 marks)
iii) Quantity of heat removed per minute by the refrigerator.	(3 marks)
(c) State two differences between boiling and evaporation.	(2 marks)

(d) State one factor that affects boiling.	(1 mark)

THIS IS THE LAST PRINTED PAGE