

HOW TO PASS IN PHYSICS PRACTICAL.

PHYSICS PAPER 232/3ACTICAL 8/29/2020 12:02 PM J. M Thiongo 2

INSTRUCTIONS TO CANDIDATES

- •Write your name and index number in the spaces provided above.
- •Sign and write the date of the examination in the spaces provided above.
- •Answer all questions on the question paper.
- You are supposed to spend the first 15 minutes allowed for this paper reading the whole paper carefully before commencing your work and confirming your apparatus.
- Marks are given for a clear record of the observations actually made, (or their suitability and accuracy, and for the use made of them.)
- Candidates are advised to record observations as soon as they are made
- •Mathematical tables and Non programmable silent Electronic calculators may be used.
- •Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- Candidates are supposed to answer the questions in English

SIGNIFICANCE OF THE PRACTICAL

- Determines the quality of candidates final grade.
- A candidate cannot score a mean grade of C+ and above in Physics unless he/ she scores at least a D+ in the practical.
 It takes 2hrs 30 min to earn a maximum
- of 40 marks.

PRACTICAL AND EFFECT ON GRADING

CANDIDATE	PAPER 1	PAPER 2	PAPER3	%	GRADE
CASE 1	60	60	30	75	A
CASE 2	70	70	10	75	C+
CASE3	40	35	25	50	C+

PHYSICS PAPER 3

- Takes 2hrs 30 minutes.
- May cover any part of the syllabus.
- •Common areas tested:
- Mechanics
- Electricity
- Optics
- Thermodynamics
- Consists of 2 questions which may be in part A & B.

WHAT IS TESTED?

Physics practical tests the candidates' ability to follow instructions, reason logically, solve tasks and make numerical scientific conclusions.

REQUIREMENTS

Complete Geometric set

30cm clear standard ruler

Contraction of the second s

Thin felt pen

Standard Calculator

Dark smooth Pencil

Bollpoit pen

READ THROUGH THE PAPER FOR THE FIRST

STAND TO COLLECT DATA ,SIT DOWN TO USE IT

SETTING UP THE APPARATUS FOR THE PRACTICAL

- •You are provided with a set of apparatus and instruments and a diagrammatic representation of the setup.
- •The instruction are in simple language.
- Follow the instructions logically to set up
- Ensure all connections in electricity circuits are tight.

ELECTRICAL CIRCUITS

For electrical circuits ensure;

- Connect all connection are tightly made.
- Close the switch to confirm the working of your circuit
- •Read the meters provided on the correct scale.
- •All connections in parallel to be done last.

COLLECTION OF DATA/MEASUREMENTS

- •This involves use of measuring instruments to make observations or measurements which are suitable and accurate.
- •The measurements taken must be in the accuracy of the measuring instruments provided.
- Conversion of units may be required

RECORDING OF MEASUREMENTS IN A TABLE.

- Marks are awarded for clear record of accurate observations in a table or otherwise.
- •The measurements taken must be presented in the appropriate or stated units with no repetition.
- •The designated instrument must be the one used.
- •Any calculations done to fill the table must be at least 4 significant figures.

COMMON MEASURING INSTRUMENTS

- LengthTime
- •Angle
- Temperature
- •Current •Voltage

- Diameters
- Volume
- Mass
- Weight
- Blind depth

METRE RULE

8/29/2020 12:02 PM

J. M Thiongo

20.0 cm

HOW TO READ A METRE RULE

Accuracy=0.01cm

Time: Stopwatch

Accuracy=0.01 sec

MEASUREMENT CYLINDER

MEASUREMENT OF VOLUME

Burrete

8/29/2020 12:02 PM

J. M Thiongo

Thermometer

THEORETICAL SKILLS.

- The student may be required to know; Series and parallel connections.
 - **Series** : R = R1 + R2 + R3
 - **Parallel :** $\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$
- •Formulas, $T = \frac{t}{N}$, V = IR, $f = \frac{1}{T}$ = <u>1</u> Real depth

•*n* = SinC apparent Depth

- •Y = mx + C, where m = gradient, C = y intercept.
- •Conversions 1m = 1000mm, 1A = 1000mA• μ m = 10⁻⁶m ; 1cm⁻³ = 10⁻⁶m³

AMMETER

8/29/2020 12:02 PM

1.55 A

VOLTMETER

MILLIAMETER

CENTRE-ZERO GALVANOMETER

SUMMARY OF ACCURACY INSTRUMENTS

INSTRUMENT	MEASUREMENT	MINIMUM ACCURACY
Metre rule	Length	0.1 cm
Vernier Calipers	Length	0.01 cm
Micrometer	Length	0.01 mm
Ammeter	Current	0.01 A
Voltmeter	Voltage	0.01 V
Thermometer	Temperature	0.0 or 0.5
Protractor	Angle	0.0 Or 0.5
Electric balance 8/29/2020 12:02 PM	Mass J. M Thiongo	0.1 ₃₁

AN ELECTRIC CIRCUIT

HOW TO CONNECT

Mass: Beam, Electronic & Spring balance

GRAPH WORK

- •AXES (A). The vertical and horizontal axis quantities will be stated.
- •The horizontal and vertical axis must be labelled and accompanied with units.
- •A well stated title may also serve for the axes
- •SCALE.(s) Should be simple and uniform. Scales with multiples of 3,7,11,13,17,19 etc should not be used. They are complex.
- •Do not break axis unless sure that intercepts are not required.
- Very large and very small values may be written in standard formas

GRAPH WORK

- •Plottings: (P) should be done as accurately possible.
- Plottings should be done with a cross (×)
- Plottings should be smaller than one small square but clear.

Is the Graph a straight line or a Curve?

- After Plotting the points on the grid Provided, Consider the question that follow.
- If you are required to find the slope or gradient of the graph; the graph is a straight line.
- If you are required to find the slope or gradient of the graph at a given point; the graph is a curve.
- The line or curve should pass through at least two thirds of the correct plots

SLOPE/ GRADIENT OF A GRAPH

38

Finding the Gradient at a point

FINDING SLOPE/GRADIENT

- •The guideline used to find gradient must be shown
- The guideline should drawn on accurate points.
- The values must read off accurately
- The gradient calculations must take the format shown below

$$Gradient = \frac{y_2 - y_1}{x_2 - x_1}$$

 Gradient may or may not have units. If it has units they must be shown.

EVALUATIONS AND SUBSTITUTIONS

- •The values obtained in the measurements, Gradients, evaluations and the y- intercept and gradients may be used to evaluate other quantities.
- •The values must be substituted as they are without any approximations.
- •The evaluated values must be with units if applicable.

Case Example 1

COMPLETING THE TABLE

Examiner's t(s)	23.00	18.00	17.21	16.15	15.54	15.00	Ŧ	0.50
Distance X (cm)	10	14	18	22	26	30		
Timet (s)	23.40	18, 10	17.76	15.88	15.41	15.25	Ŧ	0. 05
Period T (s)	2. 340	1.810	1.776	1. 58	1. 541	1. 528	√	4sf
T² (s²)	5.4	3.276	3. 154	2. 522	2.375	2.335	√	4sf

Graph of T^2 against X (cm)

•Determine the slope S of the graph.

$$S = \frac{(4.0 - 2.6)\sqrt{}}{(8 - 12)\sqrt{}}$$
$$= = \frac{1.4}{-4}\sqrt{= -0.35\sqrt{s^2/cm}}$$

Case Example 2

R(Ώ)	10	15	20	25	30	40
L(m)	0.32	0.421	0.500	0.546	0.517	0.665
$\frac{l}{l}(m^{-1})$	3.125	2.375	2.00	1.832	1.675	1.504
$\frac{1}{R}(\Omega^{-1})$	0.100	0.0667	0.05	0.0400	0.0333	0.0250

Graph of $\frac{1}{L}$ against $\frac{1}{R}$

