GIANCHERE FRIENDS SEC SCHOOL FORM TWO CHEMISTRY SERIES EXAMINATIONS TERM TWO 2021

MARKING SCHEME

1.(a)C- region of un burnt gases//colorless zone $\sqrt{^{1}}$

A-Luminous flame//yellow zone $\sqrt{1}$

b) Size of flame reduces $\sqrt{1}$ // color change from yellow to blue//number of visible regions increase//roaring sound heard(*any one observation*)

2.a) i) H₂O

b) Co-ordinate $\sqrt{1}$ // dative covalent. (Accept any relevant name but not symbol)

3.a) Have delocalized e within their structures $\sqrt{1}$

b) Better conductors of electricity // has more delocalized e⁻ $\sqrt{1}$

Not reactive with water and air // forms protective coating

More abundant // easier to extract $\sqrt{1}$

4.a) Volume of H_{2 (g)} will be equal to the 1st case $\sqrt{1/2}$. In both cases, moles of HCl are the same and Zn is in excess $\sqrt{1/2}$.

b) He is inert //does not react $\sqrt{1}$

c) -H_{2 (g)} Not easily portable

-Expensive to obtain $\sqrt{1}$ (any correct answer)

5. a) G √1

b) A₁ $\sqrt{1}$

6.. Heat mixture $\sqrt{\frac{1}{2}}$ ·NH₄Cl sublime $\sqrt{\frac{1}{2}}$

Dissolve residue in water $\sqrt{1/2}$. NaCl dissolves $\sqrt{1/2}$

Filter the mixture to recover CuO $\sqrt{\frac{1}{2}}$. Evaporate filtrate to recover NaCl crystals. $\sqrt{\frac{1}{2}}$

OR

Dissolve in water $\sqrt{1/2}$ and filter $\sqrt{1/2}$ to obtain CuO $\sqrt{1/2}$ Evaporate filtrate to dryness $\sqrt{1/2}$ and heat to sublime NH₄Cl $\sqrt{1/2}$ NaCl is left behind. $\sqrt{1/2}$

- 8(i) Allotropes different forms of the same element existing in the same physical state
 - (ii) In diamond each C-atom is bounded to 4 others through strong covelant bonds $\sqrt{\frac{1}{2}}$ leading to a giant atomic structure $\sqrt{\frac{1}{2}}$ in which covalent bonds permeate the whole lattice, hence very hard.

In graphite each C-atom is bounded to 3 other C-atom through covalent bonds $\sqrt{1/2}$ forming hexagonal layers $\sqrt{1/2}$. The layers are joined by weak van der waal forces hence they slide over each other graphite is soft and slippery

- 9. Fractional crystallization a method of separation of a mixture of soluble salts based on the differences solubility. (1mk)
 Fractional distillation method of separating a mixture (miscible liquids) based on differences in boiling points.
- 10.(a) magnesium burns with a brilliant white $\sqrt{\binom{1}{2}}$ flame to form a white residue. $\sqrt{\binom{1}{2}}$ (b) (i) Mg (s) + H₂O (g) \longrightarrow MgO (s) + H₂ (g) (1) (iii) 2H₂ (g) + O₂ (g) \longrightarrow 2 H₂O (1)
- 11(a) $B\sqrt{(1)}$ it is neutral (b) $C \sqrt{lmk}$

Aluminum chloride is acidic $\sqrt{}$ hence will dissolve in an alkaline solution (2)

12.(a) Neutrons 71 - 31 = 40
$$\sqrt{(1mk)}$$

(b) RAM = $(69 \times 60.4) + (71 \times 39.6) \sqrt{100}$
= $69.792 \sqrt{13.(a)}$ Substance P = anhydrous CaCl₂ // Cao

(b) Add a few drops of the liquid to anhydrous cobalt (ii) chloride $\sqrt{}$ which changes from blue to pink// add a few drops to anhydrous CuSo₄ $\sqrt{}$ which changes from white to blue $\sqrt{}$

- 14.(a) The strength of the metallic $\sqrt{}$ bonds increases from Na to AI $\sqrt{}$ due to increase in the number of delocalized electrons hence increase in the melting points in that order.
 - (b) Nuclear charge increases across the period from Na to AI hence the outermost electrons are pulled closer to the nucleus// increase in number of protons fro Na to AI.
- 15.(a) $Ca^+(g) \longrightarrow Ca^{2+}(g) + \acute{e} I.E = +1145 \text{ KJmol}^{-1}$
 - (b) Once an electron has been removed from an atom, the overall positive charge $\sqrt{(1mk)}$ holds the remaining electrons more firmly hence difficult to removed.
 - (c) Strontium has a large atomic radius than calcium, the electrons in $\sqrt{(1\text{ mk})}$ the outermost energy level are loosely attracted by the positive nucleus hence easy to lose. $\sqrt{(1\text{ mk})}$.
 - 16.a) J Alkaline earth metals ✓ ½
 - D Noble gas elements √ 1/2
 - b) (i) J₃B₂√ 1

(ii) $J_3B_2(s) + 6H_2O(l)$ \rightarrow 3J (OH) 2 (aq) + 2BH3 (g) \checkmark 1

- c) E is more reactive than F√ ½, across the period there is an increase nuclear charge due to increase in the number of protons √ ½, thus E has a weaker nuclear charge than H√ ½ and can easy lose its valence electron than H√ ½ OR This is because of the increase in nuclear charge from E atom to F atom, which makes it easier to remove an electron from E atom to F atom.
- d) See grid (Period 4) ✓ 1
 Reason: It consists of 10 more transition metal elements ✓ 1
- 17.(i) Write the chemical equation to show the rusting of iron. (1 mark)

 $4Fe_{(s)} + 3O_{2(g)} + xH_2O \implies 2Fe_2O_3 \cdot xH_2O_{(s)}$

(ii) Write the expression for an approximate percentage. (1 mark)

$$\frac{y-x}{4} \times 100$$

(iii) State two similarities between rusting and combustion.

(a)	Both use oxygen	(1 mark)
(b)	Oxides are formed	(1 mark)

- 18..(a) (i) green yellow
 - (ii) Slightly soluble/soluble rej. Highly soluble
 - (iii) violet/purple/grey/black solid.
- 19. (a) atoms of the same element with same atomic no differ Neutron/mass No.s
 - (b) 18 8 = 10 neutrons
- 20.(a) O
 - Has more protons that electrons $\checkmark \frac{1}{2}$
 - (b) − M √ ½
 - Has more electrons than protons. $\sqrt{1/2}$
 - (c) N and P. $\sqrt{\frac{1}{2}}$
 - Same atomic number//equal number of protons but different mass number. $\sqrt{\frac{1}{2}}$