Name	MARKING	SCHEME		
Adm. No	÷.	00111111		
School			Stream	

BUNAMFAN EXAMINATIONS

Kenya Certificate of Secondary Education

MATHEMATICS PAPER 121/2 ALT. A FORM 4 21/2 Hrs

Instructions to Candidates

- 1. Write your name, Admission Number and Stream in the spaces provided at the top of this page.
- 2. Show all your workings in the spaces provided below each question.
- 3. This paper contains two sections, Section I and Section II.
- 4. Answer all the questions in section I and any five questions in section II.
- 5. All the questions in section II carry equal marks.
- 6. Negligence and slovenly work will be penalized.
- 7. Mathematical tables and non-programmable electronic calculators maybe used.

FOR OFFICIAL USE ONLY

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total
	1															

21 22	22	
22	23 24	Tot
	21 22	21 22 23 24

GRAND TOTAL	

SECTION I (50 Mks) (Answer all questions in this section)

1. Use logarithms tables to **evaluate**. $\left(\frac{130.9}{27.68 \times 100.9}\right)^{2/3}$

(4mks)

	(27.68×
No	Log
130.9	2.1169 2.1169
27-68	1.4422
100.9	2.0039+
	3-4461
	2.6708

$$\frac{2.6708 \times 2}{3}$$
 $\frac{3}{3}$
 $\frac{3}{3}$

T. 1139

(4 mks)

2. 6708 antilog = 0.1300 \rightarrow Accuracy \rightarrow A12. A trader mixes grade A coffee costing sh 600 per kg, with grade B coffee costing sh. 280 per kg in the ratio 3 : 5.Find the price at which he must sell 1 kg of the mixture to make a profit of 20 % .

the ratio 3:5. Find the price at which he must sell 1 kg of the mixture to mak
$$\begin{bmatrix}
\cos 4 \\
3/8 \times 600
\end{bmatrix} + \begin{bmatrix}
5/8 \times 280
\end{bmatrix}$$

$$\begin{bmatrix}
120 \\
100
\end{bmatrix}$$

$$\times H00 \longrightarrow M_1$$

$$225 + 175$$

$$= Sh + 80 \longrightarrow A_1$$

3. Given that $\cos \theta = \frac{1}{\sqrt{3}}$, find the value of $\frac{\tan \theta + \sin \theta}{\cos \theta}$ in its simplest form. (Leave your answer

in surd form)

$$x = \sqrt{3}$$

$$= \sqrt{3}^{2} - 1^{2}$$

$$= \sqrt{3} - 1$$

$$= \sqrt{2} \sqrt{8}$$

$$\frac{\sqrt{6} + \sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{1}$$

4. Determine the equation of the normal to the curve
$$y = 3x^2 - 4x + 5$$
 at the point (1, 4).

Setermine the equation of the normal
$$y = 30c^{2} - 4xc + 5$$

$$dy = 6x - 4 \sim m_{1}$$

$$c_{1}, 4$$

$$dx = (6x_{1}) - 4$$

$$= 2$$

$$2 + 9_{1} = -1$$

5. Water flows from a pipe at the rate of $\frac{1}{2}$ 50 litres per minute. If the pipe is used to drain a tank full of water measuring 3.2m by 2.5m by 2m, how long would it take to drain the tank completely when it is $\frac{3}{4}$ full?

completely when it is
$$\frac{3}{4}$$
 full?

Volume = $\begin{bmatrix} 3.2 \times 2.5 \times 2 \end{bmatrix} \times 34$ M₁ Time = $\underbrace{12000}_{250}$ M₁

$$= 16 \times 34 = 12 \text{ m}^3$$

N (3++1) = 5p++p

6. Make N the subject of the formula
$$t = \frac{5P - N}{3N - P}$$

$$Timv = \frac{12000}{250} m_1$$

$$= 18 minutes$$

$$\frac{P-N}{P-P}$$
 (2mks)

$$\frac{3N-P}{3H-P} \times (3H-P) = \frac{5P-H}{3H-P} \times (3H-P) \cdot M_1$$

$$\frac{3N-P}{3H-P} \times (3H-P) \cdot M_2$$

$$\frac{3N-P}{3H-P} \times (3H-P) \cdot M_1$$

$$\frac{3N-P}{3H-P} \times (3H-P) \cdot M_2$$

$$\frac{3N-P}{3H-P}$$

$$H = 5p + tp$$

$$8t + 1 A$$

7. Determine the period and amplitude of the function.
$$y = 4 \sin (2x - 20^{\circ})$$

(2 mks)

Amplitude =
$$\frac{1}{2}$$
 B₁
Period = $\frac{360}{2}$ = $\frac{180^{\circ}}{3}$ B₁

8. In the figure below, PA is 1.2cm shorter than PD. Given that AB = 15.6cm, CD = 9.6cm,

Determine the length of PA.

9. Without using logarithms table or calculator, solve for x in;

$$\log 5 - 2 + \log(2x + 10) = \log(x - 4)$$

$$\log 5 - 2 + \log(2x + 10) = \log(x - 4)$$

$$\log 5 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 + \log(2x + 10) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(2x + 10) - \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log(x - H) = 2$$

$$\log 5 - 2 + \log$$

10. In an arithmetic progression, the 20th term is 92 and the sum of the first 20 terms is 890. Calculate;

$$a + 19d = 92$$
 $\frac{20}{2}$
 $\sqrt{20}$
 $\sqrt{20}$
 $\sqrt{20}$
 $\sqrt{20}$
 $\sqrt{20}$
 $\sqrt{190}$
 $\sqrt{20}$
 $\sqrt{20}$
 $\sqrt{20}$
 $\sqrt{190}$
 $\sqrt{20}$
 $\sqrt{20}$

(b)

$$0 + 19d = 92$$

$$d = 92 + 3$$

$$19$$

$$-Q = 3$$
 (2 mks)

 $(1 \, \text{mk})$

12.(a) Expand and simplify the expression
$$\left(4x - \frac{y}{2}\right)^5$$
 up to the third term. (2mks) $\left(1 + \frac{y}{2}\right)^5 + 5 \left(\frac{y}{2}\right)^6 + 5 \left(\frac{y}{2}\right)^4 + 10 \left(\frac{y}{2}\right)^2 + 10 \left(\frac{y}{2}\right)^2 - 10 \left(\frac{y}{2}\right)^2 - 10 \left(\frac{y}{2}\right)^2 + 10 \left(\frac{y}{2}\right)^$

(b) Hence use the expansion in (a) above to approximate the value of
$$(39.6)^5$$
 (2mks) $89.6 = (40 - 0.4)$ $4x = 40$ $4x = 40$

13. The cost per head for catering for a party is partly constant and partly varies inversely as the number of people expected. The cost per head for a party of 100 people is Sh. 1860 and that for 180 people is sh. 1060. **Find** the cost per head for 200 people

14. A body is moving along a straight line and its acceleration after t seconds is (5-2t) ms⁻². Its initial velocity Vms⁻¹ is 4ms⁻¹. Find V in terms of t. (3 marks)

$$V = \int (5-2t) dt$$

$$V = 5t - t^{2} + C / m_{1}$$

$$V = (5x0) - 0^{2} + C / m_{1}$$

$$C = 4$$

$$V = 5t - t^2 + H$$
 A

15. Determine the turning points for the curve $y = 5x - 8x^2 + x^3$.

 $cy = 5 - 16x + 3x^2 \cdot m$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 5 = 0 \quad m_{1}$$

$$\frac{1}{3} = 5 - 16x + 5 = 0 \quad m_{1}$$

$$\frac{1}{3} = 5 - 16x + 5 = 0 \quad m_{1}$$

$$\frac{1}{3} = 5 - 16x + 5 = 0 \quad m_{1}$$

$$\frac{1}{3} = 5 - 16x + 5 = 0 \quad m_{1}$$

$$\frac{1}{3} = 5 - 16x + 5 = 0 \quad m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 16x + 3x^{2} \cdot m_{1}$$

$$\frac{1}{3} = 5 - 1$$

16. Draw a line PQ = 7.2cm and on one side of the line, use a ruler and pair of compasses only to draw the locus of a point A such that \angle PAQ = 60° and on it mark point A such that PA = QA

SECTION II (50 Mks)

(Answer any FIVE questions from this section)

17. The table below represents marks sco

Marks	10-19						
	10-19	20-29	30-39	40-49	50-59	60-69	70-79
No. of students	2	6	7	13	6	4	2

Using an assumed mean of 44.5, Determine

	(i) I	Mean m	arks for	the test	. /	1		1	(3mks)
	<10ss	I	F	t=a-A	FŁ	+2	F±2	OF.	(Siliks)
	10-19	14-5	2	-30	-60	900	1800	2	Column of Ft BI
	20-29	24.5	6	-20	-120	400	2400	8	COLUMN of ET BI
	30-39	34.5	7	-10	-70	100	700	15	t= 6Ft = -50 m
	40-49	44.5	13	0	O	0	0		Ep - 40
L	50-59	54.5	6	10	60	100	600		±= -1.25
(60-69	645	4	20	80	400	1600		
-	70-79	74:5	2	30	60	900	1800		x = 44.5-1.25
			EF=		eft.		EF+2		= 43.25 A
			40		-50		3900		

ii) Standard deviation

(4mks)

$$\sqrt{\frac{8900}{40} - (-1.25)^2} = 14.86$$

iii) Determine the pass mark if 30% of the students failed the exam.

$$\frac{30}{100} \times 10 = 12$$
 failed the exam. (3mks)

Pai Mark => 13th Ad

CF up by 3rd class Bi

$$=36.64 \text{ A}$$

$$29.5 + (13-8) 10 \text{ m}$$

 $29.5 + 7.143$
 $= 36.64 \text{ A}$

18. (a) Draw the curve of the function $y = 18 + 3x - x^2$ for $-3 \le x \le 5$.

(3 marks)

Use a scale of 2cm to represent 1 unit on x axis and 1cm to represent 2 unit on y axis.

X	-3	-2	-1	0	1.	o represen	17	y uxis.	
				0	1	2	3	4	5
У		9	14	12	0	10			_ 3
		0		10	120	20	18	14	100 -

B1 al) (0)

(b) Find the actual area bounded by the curve, the x-axis and the line X=5

(2 mks)

(c) By using trapezoidal rule with five ordinates, Estimate the area bounded by the curve, the x-axis and the line X=5.

$$B = 5$$
 ordinates => 4 trapezia.
 $h = \frac{5 - -3}{4} = 2 \times BI$
 $A = \frac{1}{2} \times 2 = 0 + 8 + 2 = 0 + 18$ MI
 $A = 112 = 59 = 112$

(d) Find the error introduced by the approximation.

(2mks)

$$\frac{1173 - 112}{1173} \times 100 \text{ m}$$

$$= 4.545\% \text{ A}$$

(a) (i)

Calculate the distance between A and B in nautical miles.

(2mks)

$$\theta = 180 - (83 + 40) = 57^{\circ} / B1$$

Calculate the time taken to travel from town A to B (ii)

(2mks)

$$t_{1}mr = \frac{3420}{450}$$
 m

From **B**, the plane flies westwards along the latitude to town **C** (40°N, 13°W). Calculate (b) the distance BC in kilometers. (3mks)

$$(H0^{\circ} N, 125^{\circ} E)$$
 $(H0^{\circ} N, 13^{\circ} K)$
 $X = 25 + 15 = H0^{\circ} J$
 $\frac{H0}{360}$ $\sqrt{2} \times \frac{22}{7} + 6370$ (as $H0 \sim M1$
 $= 3 H08.05$ Km $A1$

From town C, the plane took off at 3:10 pm towards town D (10°N, 13°W), at the same (c) speed. At what time did the plane land at D? (3mks)

20. The matrix $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ represent a transformation T, triangle ABC where A(1,1) B(5,1) and C(2,4) is

mapped onto A¹B¹C¹ by T.

a) i) Find the coordinates of the image A¹B¹C¹ of ABC under T.

ii) On the grid provided draw ABC and its image A¹B¹C¹

a) Using a probability tree diagram find the probability that:-

22. The figure below represents a square based pyramid with equilateral triangles AB=5cm

Calculate the

a) Height of the triangular faces

$$K = \sqrt{5^2 - 2.5^2}$$
 MI

= 4.330 Cm ~A1

b) Length of AC

= 7.071 cm B1

c) Angle between VA and ABCD

$$COS Q = 3.536 \times M_{1}$$

$$A = COS^{-1} \frac{3.536}{5}$$

$$Q = 45^{\circ} \times AI$$

d) Angle between VAD and ABCD

$$COSA = 2.5$$
 MI
 4.33
 $A = (0)^{-1} 2.5$
 4.33

$$\begin{array}{r}
180 - (90 + 54.73) \\
= 35.27 \\
35.27 \\
\times 27
\end{array}$$

$$\begin{array}{r}
13 = 70.54 \\
\end{array}$$

- (a) Calculate
 - Area of the plot in square metres S= 1/2 [36+ 40+42] = 59 BI

$$A = \sqrt{59(59-86)(59-40)(59-42)} - m_1$$

$$A = \sqrt{59 \times 23 \times 19 \times 17} = 662.05 \text{ m}^2 \cdot \Omega_1$$

(ii) Acute angle between the edges AB and BC

Acute angle between the edges AB and BC
$$12 \times 36 \times 40 \text{ Sm B} = 662.05 \text{ m}$$

$$12 \times 36 \times 40 \text{ Sm B} = 662.05 \text{ m}$$

$$12 \times 36 \times 40 \text{ Sm B} = 662.05 \text{ m}$$

$$B = 510^{-1} 0.9195$$

$$= 66.85^{\circ} A1$$

Ular fence passes through vertices A. B and C. A water tap is to be instituted.

- A circular fence passes through vertices A, B and C. A water tap is to be installed inside (b) the plot such that the tap is equidistant from each of the vertices A, B and C. Calculate
 - (i) The distance of the tap from vertex A

(3mks)

$$2R = \frac{H2}{Sin 66.85^{\circ}}$$
 M1

The area between the circular fence and the triangular plot (ii)

24. Fill the table below for the function $y=x^3+4x^2-x-6$ for $-5 \le x \le 3$ (2 marks)

X	-5	-4	-3	-2	for-5≤x≤	3(Zmarks)		
	26				-1	0	1	2	3
Υ	-26	-2	6	4	-2	-(1 2	-	
	grid provi					0	1-2	16	54.

a) On the grid provided draw the graph of $y=x^3+4x^2-x-6$ for $-5 \le x \le 3$. Use the scale of 1cm to represent 1 unit horizontally and 1cm to represent 10 units vertically.

b) Use your graph to solve the following;

i.
$$y=x^3+4x^2-x-6=0$$

$$6 \cdot y = 3c^{3} + 43c^{2} - 3c - 6 = 0$$

$$0 = 3c^{3} + 4x^{2} - x - 6$$

$$y = 0$$

$$x = -3.8, \quad x = -1.3, \quad x = -1.3, \quad x = -1.3$$

$$x = -1.3, \quad x = -1.3,$$

ii.
$$3x^3+12x^2-15x-21=0$$

$$3x^3 + 12x^2 - 15x - 21 = 0$$

BI