KCSE PHYSICS REPLICA SERIES 2022

SEPTEMBER-DECEMBER 2022.

2022 PHYSICS REPLICA SERIES 1-10

COMPILED BY

GILDEN ELITE EDUCATIONAL PUBLISHERS
NAIROBI
0724351706

KCSE REPLICA 1

PAPER 1

SECTION A: (25 MARKS)

1. The figure7 below shows a soap film in a loop of wire.

Sketch a diagram to show the behaviour of the film when punctured at P .
2. A toy boat containing a leaking container of oil was placed on the surface of still water as shown in figure 9 below.

The boat was seen moving forward due to the leakage.
(i) On the diagram, indicate the point of the leakage
(ii) Explain your indication in (i) above.
3. The figure below shows a vernier caliper scale.

Fig. 1

If the vernier calipers used had a zero error of -0.02 what is the actual reading of the scale. (2mks)
4. The diagram in fig 5.0 shows a section of a pipe with different cross-sectional area.

If water flows with a velocity of $10 \mathrm{~m} / \mathrm{s}$ in section A , what would be the velocity of water in section B? marks)
\qquad
\qquad
\qquad
5. State a reason why transfer by radiation is faster than by conduction.
6. The pulley system in the figure below supports a load of 50 N .

Given that the efficiency of the system is 80% calculate the effort, E.

Hand lens

\qquad
\qquad
\qquad
\qquad
(c) What conclusion can be drawn from the above experiment?
8. A smooth wooden plane is inclined at an angle of 30° to the horizontal as shown in Figure 5 below. An object of mass 10 kg is pulled steadily up the plane by a force of 60 N . Determine;

\qquad
(b) efficiency of the system.
9. The Figure 6 below shows a spiral spring when not compressed and when compressed by a mass of 4.0 kg .

Fig. 6

Determine the elastic potential energy stored by the compressed spring in .

3 for marking schemes inbox 0724351706

10. Figure 3 shows a uniform wooden plank which weighs 10 N . The plank is balanced at 0.8 m from one end by a mass of 2.5 Kg .

What is the length of the wooden plank in metres.
11. The figure shows the velocity time graph of two identical spheres released from the surfaces of two liquids A and B.

Give a reason ohy the terminal velocity of the sphere In B is higher than in A. (1mark)
Time (s)

SECTION B: 55 MARKS
12. a) The figure below shows a simple mercury barometer

i. when the tube was tilted mercury did not fill the tube completely. Give areason for the observation
ii. give a reason why mercury is preferred as a liquid in a glass barometer
\qquad
\qquad
\qquad
\qquad
iii. A town at an altitude of 548 m has abarometric height of 70 cmHg .Given that the standard atmospheric pressure is 76 cmHgand that the density of mercury is $13600 \mathrm{~kg} / \mathrm{m}^{3}$, determine the density of air
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) A student half-filled a container with water, boiled the water for several minutes with the cork removed. Then later replaced the cork and poured some cold water on the container.
State and explain the observation made
(2marks)
\qquad
\qquad
\qquad
\qquad
c) Determine the pressure on a piston of cross-sectional $20 \mathrm{~cm}^{2}$ when a force of 50 MN is applied to its surface
13. In an experiment to determine the approximate diameter of an oil molecule, the following measurements were obtained:
-diameter of oil drop $=0.05 \mathrm{~cm}$
-diameter of oil patch $=0.2 \mathrm{~m}$
Determine:
i. volume of oil drop
ii. area of oil patch
\qquad
\qquad
\qquad
iii. thickness of oil molecule (3marks)
\qquad
\qquad
\qquad
iv. state two assumptions made in the above experiment
\qquad
\qquad
\qquad
14. (a) Define absolute zero temperature for an ideal gas
(b) The diagram in figure 12 below shows an experiment to investigate the relationship between volume and temperature of a fixed mass of gas at constant pressure

HEAT
Explain the functions of:

6 for marking schemes inbox 0724351706

(i) Concentrated sulphuric acid
(2 marks)
(ii) Stirrer
(1 mark)
(c) Which measurements are taken in the above experiment
(d) How are the measurements used to verify Charles Law
\qquad
\qquad
\qquad
\qquad
\qquad
(e) On the grid shown in the figure below sketch a graph of volume $\left(\mathrm{cm}^{3}\right)$ against temperature $\left({ }^{0} \mathrm{C}\right)$ for the experiment above. Clearly mark with the letter T the absolute zero temperature.
(2 marks)

(f) What two assumptions are made in the experiment
(2 marks)
15. A stone is whirled in a vertical circle as shown below. A, B, C, and Dare various positions of the stone in its motion.

C
The stone makes 2 revolutions per second in a circle of radius 0.4 m , and has a mass of 100 g .
i) Calculate the centripetal force acting on the stone

7 for marking schemes inbox 0724351706

\qquad
\qquad
\qquad
\qquad
ii) The string cuts after acquiring constant angular speed. Identify the likely position where this occurred and on the same diagram sketch the new path followed by the stone.
mark)
\qquad
iii) The stone takes 0.5 seconds to land on the ground. How high is this point in (ii) above the ground?
(3marks)
\qquad
\qquad
iv) How far does it travel horizontally before hitting the ground?
(3marks)
\qquad
16. a) State Newton's second law of motion.
b) The legal speed limit on motorways is approximately $30 \mathrm{~m} / \mathrm{s}$. In an incident on a motorway, a car of mass 900 kg leaves a skid mark 75 m long when stopping. The maximum deceleration of the car when skidding is approximately $10 \mathrm{~m} / \mathrm{s}^{2}$.
i) Show that before the incidence, the car must have been travelling above the legal speed limit.
(3 marks)
\qquad
\qquad
\qquad
ii) Calculate for this skid, the maximum average braking force between each of the four tyres and the road.
\qquad
\qquad
\qquad
iii) When the motorway is wet, the braking force provided by each wheel is reduced to 50% of the calculated in (ii) above. What is the effect of this reduced breaking force on stopping distance, explain your answer. Assume that the speed of the car before breaking is the same in both cases.
marks)

8 for marking schemes inbox 0724351706

c) A student carried out an experiment to measure static friction using identical wooden blocks arranged as shown in the figure.

State and explain which spring balance will indicate a smaller reading when the block just starts to move.
(2 marks)
\qquad
\qquad
\qquad

PAPER 2

SECTION A: (25 MARKS)

1. Differentiate between primary and secondary cells
2. The diagram in figure 1 below shows the displacement against time for a wave whose wavelength is 4.0 mm .

Determine the velocity of the wave.
3. The figure 2 below shows a thin wire connected to a charge generator and placed close to a candle flame.

Explain why the candle flame is deflected as shown.
\qquad
\qquad
4. What is thermionic emission?
5. Ultraviolet radiation incident on a zinc plate releases electrons from the zinc surface. The energy of each incident proton is 5.4 eV . Zinc has a work function of 4.3 eV .
(i) State the name given to this effect. (1 mk)
(ii) What is meant by work function of the metal?
(iii) An electron is emitted from the surface of zinc. Calculate the maximum kinetic energy of the electron in Joules.
6. A vibrating tuning fork of frequency 512 Hz was brought close to two test tubes X and Y With water levels as shown in fig. 3
Fig. 3

It was observed that loud sound is produced in test tube X but not in Y . Explain this observation.
\qquad
\qquad
\qquad
\qquad
7. The chart below shows an arrangement of different parts of the electromagnetic spectrum.

Radio	A	Visible	Ultra-violet	X-rays	Gamma-Rays

Name the radiation represented by A
(1mk)
8. The figure 4 below shows a container loader which uses electromagnet to offload containers from a ship.

(i) Why should the container be made of iron.
(ii) State two ways in which the loader can be made to lift a heavier container. (2 mrks)

11 for marking schemes inbox 0724351706

9. The figure below shows an object O and it's image I formed by a concave mirror. The diagram is drawn to scale.

Using a suitable ray, determine the focal length (f) and the radius of curvature (r) of the mirror.
f. cm
r. cm
10. State two differences between pinhole camera and the human eye.
\qquad
\qquad
\qquad
11. Give a reason why soft iron is used as a core of the coil of an electric bell.
(1 mark)
12. State two uses of gold leaf electroscope.

SECTION B: (55 MARKS)

13. a) Define a resistor.
b) The figure below shows three resistors connected to 12 v supply of internal resistance of 0.2Ω.

\qquad
ii) The total current in the circuit.
\qquad
\qquad
\qquad
iii) the current through the 4Ω resistance.
\qquad
\qquad
\qquad
c) If the current flows for 2 minutes calculate the total energy dissipated.
\qquad
\qquad
\qquad
d) State two applications of resistors in real life situation.
(i)
(ii)
14.

a) Define the following terms.
i) Capacitor
ii) Capacitance
b) Three capacitors are connected to a 10 v battery.

Calculate

i) The effective capacitance
ii) The total charge
\qquad
\qquad
c) State three factors that determine the capacitance of a capacitor.
i)
ii)
iii)
15. (a) X- rays are used for detecting cracks inside metal beams;
(i) State the type of the X - rays used.
(ii) Give a reason for your answer in (i) above.
(1mark)
(b) Figure shows the features of an X- ray tube

i) Name the parts labelled A and B.
A.
B.
(ii) Explain how a change in the potential across P changes the intensity of the X rays produced in the tube.
(iii) During the operation of the tube, the target becomes very hot. Explain how this heat is caused.
marks)
(iv) What property of lead makes it suitable for use as shielding material?(1mark)
(c) In a certain X- ray tube, the electrons are accelerated by a Pd of 12000 V . Assuming all the energy goes to produce X - rays, determine the frequency of the X - rays produced. (Planck's constant $h=6.62 \times 10^{-34} \mathrm{JS}$ and charge on an electron, $e=1.6 \times 10^{-19} \mathrm{C}$). (4marks)
16. A student connected a circuit as shown in figure 16 below hoping to produce a rectified out put

(a) Sketch the graph of the output on the CRO screen
(2mark)
\qquad
\qquad
\qquad
\qquad
(b) Explain how the output above is produced
\qquad
\qquad
17. (a) Thorium decays to protactinium by emission of a beta particle (β) as shown.

Determine the atomic and mass number of thorium Atomic number \qquad mass number \qquad
(b) The figure 15 below shows the path taken by three radiations A, B and C from a radioactive source through an electric field.

Fig. 15
(i) Identify the radiation B
(ii) Give a reason for the difference in deviation shown by A and C
(c) The table 1.Below shows results obtained from a G-M tube when a radioactive sample was placed near it.

Time (min)	0	1	2	3	4	5	6
Counts per (min)	1048	994	926	838	719	557	330
Correct count							

(i) Given that the background radiation was 30 counts per minute, fill in the blank spaces in the table.
(3mark)
(ii) Draw a suitable graph on the grid provided.
(ii) From the graph determine the half-life of the sample.

PAPER 3

QUESTION 1

You are provided with the following

- A voltmeter
- Two dry cells and a cell holder
- A switch
- A resistor labelled R (3.9)
- A wire mounted on a mm scale and labelled G
- A micrometer screw gauge (to be shared)
- Six connecting wires with six crocodile clips

Proceed as follows.

(a) Record the length Lo of the wire labelled G
$\mathrm{L}_{\mathrm{O}}=$
Use the micrometer screw gauge provided to measure the diameter of the wire labelled G at two different points and determine the average diameter, d
The diameter $\mathrm{d}_{1}=$ \qquad $\mathrm{mm}, \mathrm{d}_{2}=$ \qquad mm

Average diameter $\mathrm{d}=$ mm
\qquad
\qquad
Determine the radius r of the wire in metres.
Radius $\mathrm{r}=$ \qquad
\qquad
\qquad
\qquad
(b) Set up the apparatus as shown in the circuit diagram in figure 1.

(i) Use the voltmeter provided to measure the p.d. V_{R} across R and $p . d . V_{G}$ across G when the switch is closed. $\mathrm{V}_{\mathrm{R}}=$ \qquad volts

$$
\mathrm{V}_{\mathrm{G}}=
$$

volts
(1 mark)
Open the switch
(ii) Use the value of R provided and the value of V_{R} in $b(i)$ above to calculate the current I flowing through R when the switch was closed.
(1 mark)
\qquad
\qquad
$I=$ \qquad Amperes.
(iii) Determine the constant H given that
$H=\frac{100 V_{G}}{1 \times L_{O}}$
(1 mark)
$\mathrm{H}=$ \qquad
(c) Connect the voltmeter across R as shown in figure 2 below.

Fig 2

Adjust the position of one crocodile clip on the wire G to a point such that the length lof the wire in the circuit in 5 cm (see figure 2 above) close the switch.
Read and record in table 1 the value of p.d. across R. Open the switch.
(d) Repeat the procedure in (c) above for the other values of L shown in the table $1 . \quad$ (3 marks)

Table 1.

Distance L (cm)	0	2	10	20	30	40	50	70
p.d. V across RV								

(e) i) On the grid provided next page, plot the graph of V (y-axis) against l.
ii) From the graph, determine l_{1}, the value of l when $V=\frac{V_{o}}{2}$ where V_{O} is the p.d. where $l=0$
(f) Determine the constant D for the wire given that $D=\frac{R}{l_{1}} \times \frac{300}{V_{o}}$
(f) Determine the constant p given that $p=\frac{\pi r^{2}}{2}(D+H)$, where r is the radius of the wire in metres.
(2 marks)

QUESTION 2

Section A
You are provided with the following

- A candle
- A lens and a lens holder
- A screen
- A metre rule
a) Set up the apparatus as shown in figure below (ensure that the candle flame and the lens are approximately the same height above the bench)

b) Set the position of the lens so that the 40 cm from the candle $(\mathrm{U}=40)$. Adjust the position of the screen until a sharp image of the candle flame is obtained. Measure the distance, V between the lens and the screen. Record the value of V_{1}
$\mathrm{V}=$ \qquad cm)
1mk)
c) Repeat the procedures in b) above for other values of U in the table b below.

Table b)

$\mathrm{U}(\mathrm{cm})$	45	50	55
$\mathrm{~V}(\mathrm{~cm})$			
Magnification $(\mathrm{m}) \frac{v}{u}$			

d) Given that $\mathrm{f}=\frac{v}{m+1}$,
where f is the focal length of the lens, use the results in table above to determine the average values of f. 4mks)

PART B.

You are provided with the following:

19 for marking schemes inbox 0724351706

- rubber bung.
- vernier calipers.
- beam balance.

Proceed as follows:

a) Using a vernier caliper, measure the lengths D, d, and h as shown in figure 2.

Figure 2
$\mathrm{D}=$
m
$\mathrm{d}=$
m
$\mathrm{h}=$ \qquad m
b) (i) Measure the mass, M of the rubber bung using the beam balance.
$\mathrm{M}=$ \qquad kg
(ii) Given that $Q=\binom{d+D}{4} \quad$, determine the value of Q.
(iii) Determine the value of r given that $n r Q^{2}=$
(iv)what are the units of r
(v) what is the significance of r

SECTION C

You are provided with the following

- a metre rule
- a retort stand, one boss, one clamp
- One 500 ml beaker $3 / 4$ full of water
- One 100 g mass
- One 50g mass
- 3 pieces of thread approximately 30 cm long

Procedure
a) Balance the metre rule horizontally by suspending it from the stand and clamp with one of the threads.
Record the balance point G
$G=$ \qquad cm
b) suspend the 100 g mass from the metre rule at a point such that $x=5 \mathrm{~cm}$ from point G, with the 100 g mass completely immersed in water in the beaker hang the 50 g mass from the metre rule.
Note the point of suspension (p) of the mass
$\mathrm{P}=$

c) Calculate the apparent weight of the 100 g mass in water.
d) Find the upthrust of 100 g mass in water.

KCSE REPLICA 2

PAPER 1

SECTION A (25 MARKS)
 Answer All Questions In This Section In The Spaces Provided

1. Figure 1 shows part of the scales of a micrometer screw gauge when it is completely closed.

Figure 1

Find the zero error of this micrometer screw gauge.
2. A barometer reads 760 mmHg at sea level. Find it's reading at an altitude of 2500 m above sea level. (Density of mercury $=13600 \mathrm{kgm}^{-3}$ and density of air $1.25 \mathrm{kgm}^{-3}$)
\qquad
\qquad
3. Figure 4 shows a velocity-time graph of a small metal sphere falling through water in a tall jar.

On the same axes, draw a velocity-time graph for the same metal sphere falling through air.
(1 mark)
4. Figure 5 shows the tension, T on a pendulum bob suspended from a support.

Figure 5

Indicate on the diagram the other force acting on the pendulum bob.
(1 mark)
5. A stone and a feather are dropped from rest from a building 20 m tall. If they reach the ground at the same time,
a) State the condition under which they fall.
(1 mark)
b) Find the velocity with which they reach the ground. (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$) (2 marks)
\qquad
\qquad
\qquad
\qquad
6. Define a radian as applied in circular motion.
(1 mark)
7. The figure below shows a thermometer used by a doctor to determine the temperature of a patient. Why is it difficult to work with this thermometer?
(2 marks)

8. A glass block is suspended from a spring balance and held inside a beaker without touching the beaker. Water is added gradually into the beaker. The figure below shows the variation of the upthrust on the block with depth of water in the beaker.

State the reasons for the observation at Y (2 marks)
9. Which branch of Physics deals with kinetic energy within matter?
(1 mark)
10. The figure 2 below shows a beaker containing water placed on a flat bench. State and explain the changes in stability of the beaker when the water freezes to ice.

\qquad
11. Figure 5 is a simple diagram of a vacuum flask with an enlarged view of the part of it in the circle. Use it to answer question (a) and (b).

a) Name the material in A and B.

A: \qquad
B: \qquad
b) What type of energy losses are minimized or prevented by the parts A and B?

A:
B:
(1 mark)
12. (a) State Newton's Third Law of Motion
(b) A car of mass 900 kg is initially moving at $20 \mathrm{~m} / \mathrm{s}$. Calculate the force required to bring the car to rest over a distance of 15 m .

SECTION B - 55 MARKS

Answer All the Questions

13. (a) A body of mass 20 Kg hangs 4 m and swings through a vertical height of 0.9 m as shown in the figure below.

Determine;
(i) The potential energy at position, A
(ii) The speed of the body when passing through the lowest point, B
(b) A Crane lifts a load of 2000kg through a vertical distance of 3.0 m in 6 seconds.

Determine the:
(i) Work done by the crane. (Take $\mathrm{g}=10 \mathrm{~N} / \mathrm{Kg}$)
(ii) Power developed by the crane.
(iii)Efficiency of the crane given that it is operated by an electric motor rated 12.5 kW
(3 marks)
14. (a) Figure 9 shows a suspended copper solid immersed in a fluid.

Explain what will happen to the tension in the string if a liquid of higher density is used.
(2 marks)
(b) Figure 10 below shows a ball fully immersed in water and held with a string attached at the bottom.

(i) If the mass of the ball is 0.5 kg , calculate the weight of the ball.
(ii) The volume of the water displaced by the immersed ball is $8.0 \times 10^{-4} \mathrm{~m}^{3}$. Calculate the up thrust on the ball. $\left(\rho\right.$ water $\left.=1000 \mathrm{~kg} \mathrm{~m}^{-3}\right)$
(iii)Determine the tension T on the string
(c) An object weighs 5.0 N in air, 3.0 N when fully immersed in water and 4.0 N when fully immersed in a certain liquid. Determine the density of the liquid.
(3 marks)
15. a) Define the term 'heat capacity'
(1 mark)
b) A block of metal of mass 150 g at $100^{\circ} \mathrm{C}$ is dropped into a well lagged calorimeter of mass 215 g and specific heat capacity of $400 \mathrm{~J} / \mathrm{Kg} / \mathrm{K}$ containing 100 g of water at $25^{\circ} \mathrm{C}$. The temperature of the resulting mixture is $34^{\circ} \mathrm{C}$ (Specific heat capacity water is $4200 \mathrm{~J} / \mathrm{Kg} / \mathrm{K}$). Determine;
(i) Heat gained by calorimeter.
(ii) Heat gained by water.
(iii)Specific heat capacity of the metal block
c) A copper block of mass 500 g is electrically heated with a heater rated 5 W .The heater is on for 8 minutes. Calculate the temperature rise in the block. (Specific heat capacity of copper is $460 \mathrm{~J} / \mathrm{Kg} / \mathrm{K}$)
(3 marks)
16. a) A car negotiating a corner at a constant speed is said have a change of momentum. Explain this observation.
(1 mark)
b) Figure 15 shows the overview of a turn table on which glass blocks A and B are placed at different radii from the centre along a straight line. The radius $\mathbf{r} 1$ is 50 cm while that of $\mathbf{r} 2$ is 120 cm . The mass of A is 300 g that of B is 900 g .

Figure 15

Both blocks maintain the same straight line as the turn table moves in uniform circular motion. Block A has a linear velocity of $40 \mathrm{~ms}^{-1}$.
I. Determine the:
(i) Centripetal force on block A .
(ii) Linear velocity of block B.
II. (i) State which block is likely to slide off the turn table.
(1 mark)
(ii) Explain your answer in (II) (i) above.
(2 marks)
17. (a) Figure 8 shows a sealed glass syringe that contains smoke particles suspended in air.

Figure 8

(i) Explain why the smoke particles are suspended in the air and do not settle to the bottom.
(2 marks)
(ii) The air in the syringe is at a pressure of $2.0 \times 10^{5} \mathrm{Nm}^{-2}$. The piston is slowly moved into the syringe until the volume of the air is reduced from $80 \mathrm{~cm}^{3}$ to $25 \mathrm{~cm}^{3}$.
i. State why the piston must be moved slowly.
(1 mark)
ii. Calculate the final pressure of the air in the syringe.
(3 marks)
b) State what is meant by an ideal gas.
(1 mark)
c) The pressure acting in a gas in a container was changed steadily while the temperature of the gas was maintained constant. The value of volume, V , of the gas was measured for various values of pressure. The graph in the figure A shows the relation between the pressure. P_{1} and the reciprocal of volume, I/V.

(i) Given that the relation between the pressure P and the volume V of the gas is given by $\mathrm{PV}=\mathrm{k}$, where k is a constant use the graph to determine the value of k . (3 marks)
(ii) What physical quantity does k represent?

PAPER 2

SECTION A (25 MARKS)

Answer all the questions in this section in the spaces provided.

1. The figure 1 below shows a ray of Light incident on the surface of one plane mirror.

Sketch the path of the ray on the diagram after striking mirror 2 indicating all the angles.(2 marks)
2. An observer watching a fireworks displays sees the light from an explosion and hears the sound 4 seconds later. How far was the explosion from the observer (speed of sound in air $=330 \mathrm{~m} / \mathrm{s}$. (2 marks)
\qquad
\qquad
\qquad
3. In the circuit diagram shown in figure 2 below the lamps are identical and the cells are also identical.

State with a reason in which circuit the lamp will be lit for a longer period.
4. A bulb is rated $100 \mathrm{~W}, 240 \mathrm{~V}$. Determine the amount current through the filament of the bulb.
\qquad
5. A negatively charged rod is brought near the cap of a leaf electroscope. The cap is then earthed momentarily by touching with the finger. Finally the rod is withdrawn. State the final charge on the electroscope. Explain your answer.
6. Figure below show a wire carrying current whose direction is out of the paper. The paper is placed in a magnetic field.

N

(a). Indicate on the figure the direction of the forced F , acting on the wire.
\qquad
(b). State what would be observed on the wire if the direction of the current is reversed (i.e. into the paper). (1 mark)
\qquad
\qquad
7. The figure 4 below shows a device x connected in series with a resistor of resistance R, the voltage across x is 0.14 v . .

Calculate the value of resistance R.
8. The Table below shows the type of radiation detection method and uses of electromagnetic radiations.

Complete the table.
(1 mark)

Type of radiation	Detection	
	Blackened thermometer	warming

9. An object O is placed in front of a convex mirror as shown in the diagram below.

Complete the diagram to show the position of the image I.

10. The sketch shown below is a displacement-time graph of a wave travelling at $320 \mathrm{~m} / \mathrm{s}$.

Determine the wavelength of the wave.
11. Give a reason why repulsion in magnetism is the surest way of testing polarity.
12. The diagram below shows plane waves moving from shallow to deep end of a pond.

Complete the diagram to show the waves on the deep end.

SECTION B (55 MARKS)

Answer all questions in this section

13. (a). Figure 4 below shows a modern mains appliances

(c). Give a reason why power is transmitted at high voltage.
(1 mark)
(d). A 2 kW electric heater is used for 10 hrs . Calculate the cost of electricity if it costs $\operatorname{sh} .30$ per unit. (3 marks).
\qquad
\qquad
\qquad
(e). A step down transformer has 600 turns in the primary coil. The input voltage is 120 V while the output voltage is 24 V . Determine the number of turns in the secondary oil.
\qquad
\qquad
(f). State how energy lost through eddy currents is minimized in a transformer.
(1 mark)
14. (a).State Snell's law.
(b). A ray of light travelling from water to glass makes an angle of incident of 30° as shown below.

33 for marking schemes inbox 0724351706

Determine the angle of refraction in the glass.
(3 marks)
(Refractive index of water $=4 / 5$ and Refractive index of glass $=3 / 2$)
(c). State the necessary and sufficient conditions for total internal reflection to occur. (2 marks)
(d). The figure below shows a ray of Light incident on an isosceles triangle of right angle.

Complete the diagram to show how the ray travels through the Prism. Take the critical angle of the glass prism to be 39°.
(2 marks)
(e). State two advantages of optical fibre when used in communication over ordinary copper wires.
(2 marks)
(b). Name two factors that affect photoelectric effect.
(2 marks)
(c).The threshold frequency of sodium is $5.6 \times 10^{14} \mathrm{~Hz}$. Planks constant $6.63 \times 10^{-34} \mathrm{Js}$. Find
(i). Work function of sodium.
(2 marks)
(d). A certain metal is illuminated with radiation of different frequencies and corresponding stopping potential determined. The graph below shows how the stopping potential vary with frequency. (Electronic charge, $\mathrm{e}=1.6 \times 10^{-19} \mathrm{c}$)

Using the graph determining
(i). Threshold frequency.
(1 mark)
\qquad
\qquad
\qquad
(ii).Planks constant.
(3 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
(iii). Work function of the metal.
16. (a).Distinguish between nuclear fusion and nuclear fission.
\qquad
(b). The equation below represents a nuclear reaction

$$
{ }_{84}^{218} P o \rightarrow{ }_{85}^{218} A+{ }_{q}^{p} y
$$

(i). Determine the values of P and q .
\qquad
\qquad
\qquad
(c). The figure below represents diffusion of various radiations from a radioactive source S placed in an electric field between two plates X and Y

M
P
(d). Given that 5 g of cobalt-60 is kept in a laboratory and it has a half-life of 5 years. Determine the mass that will have decayed after 15 years.
(3 marks)
17. The figure below represent the important parts of an x-ray tube used in an industry

(a). Name the part labelled R.
(1 mark)
(b). Name a suitable material used for the target, give reason for your answer.
(2 marks)
(c). State the reason why R is concaved in shape.
(d). Explain how x-rays are produced in the x-ray tube.
\qquad
\qquad
(e). Explain why the x-ray tube should be evacuated.
\qquad
\qquad
(f). The shields are usually made from lead metal.

Explain why lead is the preferred material for shield.
(g). Explain the effect on the x-rays produced when:
(i). The magnitude of the extra-high tension. Voltage is increased.
(ii). The ammeter reading is increased.
\qquad

PAPER 3

QUESTION 1

Part A

You are provided with the following apparatus.

- Helical spring with pointer.
- One clamp, one stand and one boss
- A stop watch
- One 50 g mass
- Two 100 g masses

Proceed as follows:
(i) Suspend the spring vertically alongside a clamped metre rule as shown in the diagram so that the pointer slide along the millimeter scale of the metre rule as shown in the figure below.

(ii) Measure the length L_{o} of the unloaded spring.

Lo - \qquad
(iii)Attach a mass of 100 g on the spring and measure the new length L of the spring. Record this in the table.

Table

Mass (g)	Weight... (N)	$\mathrm{L}(\mathrm{M})$	$\mathrm{E}=\left(\mathrm{L}-\mathrm{L}_{0}\right)(\mathrm{M})$	$\mathrm{K}=\frac{w}{e}\left(\frac{N}{M}\right)$
100				
150				
200				

(iv)Calculate the change in length $\mathrm{e}=\left(\mathrm{L}-\mathrm{L}_{0}\right) \mathrm{m}$ due to the mass of 100 g and record in the table.
(v) Repeat the procedure in (i) - (iv) for mass of 150 g and 200 g .
(vi)Calculate the value of K given:
$\mathrm{K}=\frac{w(N)}{e(M)}$ and find the average value of K.
K Average $=$

PART B

(i) Using the same set up as in Part A above, attach the 100 g on the spring and support it to stop oscillating.
(ii) Pull the mass through a small distance vertically downwards and release it to make vertical oscillations and record the time for 10 oscillations and determine the periodic time(s).
(iii)Hence complete the table to get $\mathrm{T}^{2}\left(\mathrm{~S}^{2}\right)$ and the value of $\mathrm{K}=\frac{39.49 \times M(\mathrm{Kg})}{T^{2}\left(S^{2}\right)}$ where $\mathrm{M}=$ mass used and $\mathrm{T}^{2}\left(\mathrm{~S}^{2}\right)$ is its periodic time (T) squared.
(iv) Table
(3/marks)

Mass $\mathrm{m}(\mathrm{kg})$	Time for 10 oscillations $\mathrm{t}(\mathrm{s})$	$\mathrm{T}(\mathrm{s})$ $\mathrm{T}=\left(\frac{t}{10}\right)$	$\mathrm{T}^{2}\left(\mathrm{~S}^{2}\right)$	$\frac{39.49 \times M(\mathrm{Kg})}{T^{2}\left(S^{2}\right)}$
1.00				
1.50				
2.00				

(v) Find the average value of K
($1 / 2$ mark)

PART C

You are provided with the following:

- A meter rule
- Complete stand
- One 50 g mass and a 100 g mass
- Three pieces of thread 30 cm each.
- Some water in a beaker
- Liquid L in a beaker
- Tissue paper.

Proceed with the experiment as follows:
(i) Balance the meter rule on the stand and record the reading at this point.

Balance point $=$ \qquad .(1 mark)
(For the rest of the experiment, the balancing thread must be placed at this position)
(ii) Set up the apparatus as shown in the figure 4 below: Use the thread provided to hang the masses such that the positions of the support can be adjusted.

The balance point is attained by adjusting the position of the 100 g mass. Note that the distance X and D are measured from the supporting string and the 50 g mass is fully submerged in water.

Record the values of
$\mathrm{X}=$
(1 mark)
$\mathrm{D}=$
(1 mark)

Apply the principle of moments to determine the weight W_{1} of the 50 g mass in water and hence determine the upthrust U_{w} in water.
(2 marks)

$$
\mathrm{W}_{1}=
$$

$$
\mathrm{U}_{\mathrm{w}}=
$$

Remove the 50 g mass from the water and dry it using the tissue paper.
(iii).Now changing distance D obtained in (ii) balance the metre rule when the 50 g mass is fully immersed in the liquid. Record the new value of the distance X .

$\mathrm{X}=$ \qquad
Apply the principle of moments to determine W_{2} of the 50 g mass in the liquid L and hence determine the upthrust U_{L} in the liquid.

$$
\mathrm{W}_{2}=
$$

\qquad

$$
\mathrm{U}_{\mathrm{L}}=\text {. }
$$

(iv)Determine the relative density R.D of the liquid L given that:

$$
\mathrm{R} . \mathrm{D}=\frac{\mathrm{UL}}{\mathrm{Uw}}
$$

(v) Find the density of liquid L in $\mathrm{Kg} / \mathrm{m}^{3}$

QUESTION 2

You are provided with the following apparatus

- Two dry cells and a cell holder
- A voltmeter
- An ammeter (0-1A)
- Potentiometer P
- A bulb and bulb holder
- 7 connecting wires
- 4 crocodile clips
- A switch S

PART A

Set up the circuit as shown below.
Ensure the switch is off.

(i) Record the reading of the voltmeter when the switch is open
V_{1} \qquad
(ii) Close the switch and record the voltmeter reading.
(1 mark)
V_{2}
(iii)Explain the differences in the value of V_{2} and V_{1}

PART B

a) Set up the circuit as shown below.

P

Close the switch S and adjust the potentiometer P till the bulb lights brightest. Record the ammeter and voltmeter reading.
I
(1/2 mark)
V
(1/2 mark)
b) (i) By adjusting the potentiometer P obtain the corresponding ammeter readings of the values of voltmeter readings given in the table.

(ii) Plot a graph of voltage against current.

(iii)Determine the resistance of the bulb when voltage is 0.9 v .
(iv)Explain the nature of the curve in the graph.
\qquad
\qquad

PART C

You are provided with the following:

- A lens holder
- Convex lens
- A white screen
- A metre rule
- A candle

Proceed as follows:
(i) Set up the apparatus as shown in Figure 4

(ii) Starting with $u=30 \mathrm{~cm}$, adjust the position of the screen to obtain a sharp image of the candle flame. Record the value of v in Table 3.

Repeat the procedure for $\mathrm{u}-50 \mathrm{~cm}$. Complete Table 3

$\mathrm{u}(\mathrm{cm}$	$\mathrm{v}(\mathrm{cm})$	$\mathrm{m}=\frac{v}{u}$
30		
50		

Table 3
(iii)Given that the focal length f of the lens satisfies the equation $\mathrm{f}=\frac{v}{m+1}$, determine the average value of the focal length, f .

KCSE REPLICA 3

PAPER 1

SECTION A (25 MARKS)

1. Figure 1, shows a Vernier caliper of zero error 0.02 cm being used for measuring the diameter of a cylindrical container of height 10 cm . The scale reading of the Vernier is as shown alongside.

Figure 1
a. Determine the diameter of the container
(2 marks)
b. Estimate the volume of a liquid which can completely fill the container
(2 marks)
2. State one factor that affects the turning effect of a force on a body.
3. Figure 2 shows some air trapped by mercury in a glass tube. The tube is inverted in actositaining mercury.

Given fliatthe atmospheric pressure is 760 mmHg and the height of mercury column in the tube is 600 mm , determine the pressure of the air trapped in the tube in mmHg .
(2 marks)
4. Figure 3 shows drops of mercury and water on a glass surface, Explain the difference in the shapes of the drops.

(2marks)

Figure 3
45 for marking schemes inbox 0724351706
5. A ball is thrown from the top of a cliff 20 m high with a horizontal velocity of $10 \mathrm{~ms}^{-1}$. Calculate the distance from the foot of the cliff to where the ball strikes the ground.
6. Explain one advantage of mercury over alcohol as a thermometric liquid.
7. A body of mass \mathbf{M} is allowed to slide down an inclined plane. State two factors that affect its final velocity at the bottom of the inclined plane.
8. A stopwatch reads 08:10:84 and 09:10: 90 before and after an experiment respectively. Determine the duration of the event in SI units.
(2marks)
9. Explain the meaning of thermodynamics as a branch of physics.
10.
a. State the Hooke's Law.
b. Figure 4 shows identical spiral springs supporting a load of 90 N. Each spring has a spring constant $\mathrm{k}=$ 200N/m

Figure 4
Determine the total extension of the system (take the weight of the cross bars and springs to be negligible) (2 marks)
11. Figure 5 shows a rectangular loop with a thin thread loosely tied and dipped into a soap solution.
 Draw on the space provided what is observed when point \mathbf{A} is punctured.

Figure 5
12. Two horizontal strings are attached to a block, resting on a frictionless surface, as shown in figure 6 .

Figure 6
A force of 100 N pulls on one string. The block does not move. Find the value of the force, F on the other string.
13. A wooden bench feels neither warm nor cold when touched by your bare hands. Explain this observation. (2 marks)

SECTION B (55 MARKS)

14.

a) Explain why bodies in circular motion undergo acceleration even when their speed is constant.
(1mark)
b) A particle moving along a circular path of radius 5 cm describes an arc of length 2 cm every second. Determine:
i. Its angular velocity.
ii. Its periodic time.
c) A stone of mass 150 g is tied to the end of a string 80 cm long and whirled in a vertical circle at $2 \mathrm{rev} / \mathrm{s}$. Determine the maximum tension in the string.
(3marks)
d) State one factor affecting centripetal force
e) State the principle of conservation of linear momentum
f) A bullet of mass 60 g is fired horizontally with a velocity of $200 \mathrm{~m} / \mathrm{s}$ into a suspended stationary wooden block of mass 2940 g . Determine:
i. Common velocity of both the bullet and the block, if the bullet embedded into the block.
(2 marks)
ii. Height to which the block rises.
15.
a) State two factors that affect the boiling point of a liquid
b) 100 g of a liquid at a temperature of $10^{\circ} \mathrm{C}$ is poured into a well lagged calorimeter. An electric heater rated 50 W is used to heat the liquid. The graph in figure 7 shows the variation of the temperature of the liquid with time.

Figure 7
(i) From the graph, determine the boiling point of the liquid
(ii) Determine the heat given out the by the heater between the times $t=0.5$ minutes and $t=5.0$ minutes (3 marks)
c) From the graph determine the temperature change between the times $t=0.5$ minutes and $t=5.0$ minutes, hence determine the specific heat capacity of the liquid
d) 1.8 g of vapor was collected from above the liquid between the times $\mathrm{t}=3.5$ minutes and $\mathrm{t}=4.5$ minutes. Determine the specific latent heat of vaporization of the liquid
(4 marks)
16.
a) State the law of floatation
(1 mark)
b) Figure 8 below shows a simple hydrometer

A
B

Figure 8
i. Identify the parts labelled A and B
(2 marks)
ii. State the purpose of the part labelled B
(1 mark)
c) How would the hydrometer be made more sensitive?
(1 mark)
d) Describe how the hydrometer is calibrated to measure relative density
e) Figure 9 shows a cork floating on water and held to the bottom of the beaker by a thin thread.
i. Name the forces acting on the cork

ii. Describe how each of the forces mentioned in (i) above changes when water is added until the container is completely filled (3 marks)
17.
a) Figure 10 shows a graph of pressure against volume for a fixed mass of a gas at constant temperature.

Figure 10
In the space provided, sketch a graph of pressure, p against $\frac{1}{v}$
b) Explain the pressure law using the kinetic theory of matter
c) $20 \mathrm{~cm}^{3}$ of a gas exerts a pressure of 760 mmHg at $25^{\circ} \mathrm{C}$. Determine the temperature of the gas when the pressure increases to 900 mmHg and the volume decreases to $15 \mathrm{~cm}^{3}$. (3 marks)
18.
a) Define the term velocity ratio of a machine
b) The figure 11, below shows part of the hydraulic lift system. State any one property of the liquid under which the hydraulic system works
(1 mark)

Figure 11
c) The hydraulic lift machine above has velocity ratio 45 and it overcomes a load of 4500 N when an effort of 135 N is applied. Determine:
i. The mechanical advantage of the machine
ii. Efficiency of the machine
iii. The percentage of work that goes to waste

PAPER 2

SECTION A 25 MARKS

Answer all the questions in the spaces provided.

1. The figure below shows a ray of light incident on a mirror at an angle of 45°. Another mirror is placed at an angle of 45° to the first one as shown. Sketch the path of the ray until it emerges.
2. State any two ways of reducing the magnetic force of attraction of a magnet (2 marks)
3. The figure below shows a transverse stationary wave along a string.

Name P and Q and explain how each is formed.
(3 marks)
4. The diagrams below show a positively charged acetate strip and a negatively charged polythene strip freely suspended and isolated.

Two rods X and Y are brought up in turn to these strips. X attracts the acetate strip but repels the polythene strip. Rod Y does not repel either the acetate or the polythene. State the type of charge on each rod.
X
(1 mark)
Y
(1 mark)
5. The diagram below shows waves generated from a tuning fork. If the wave takes 0.1 second to move from point A to B. determine the frequency of the wave.
(4 marks)

6. Name two detectors of microwave
\qquad
\qquad
\qquad
7. Other than current state two other factors that affect the magnitude of force on a current carrying conductor placed in a magnetic field. (2 marks)
8. Give a reason why a concave mirror is not preferred as a driving mirror. (1 mark)
\qquad
\qquad
9. A student connected the set up below in the laboratory. Explain the observation made on the bulb when the setup below is taken to a dark room

\qquad
\qquad
\qquad
10. A person standing 110 m from the foot of a cliff claps his hands and hears a sound 0.75 seconds later. Find the speed of sound in air. (3 marks)
\qquad
\qquad
\qquad
11. The figure below is part of electromagnetic spectrum.

A		Visible light	UV	

Identify radiation A and state its source.
(2 marks)

SECTION B 55 MARKS

12. (a) The figure below shows a X-ray tube.

52 for marking schemes inbox 0724351706

(i) Name the part labelled C
(ii) State the property of the material labelled B on the diagram which makes it suitable for use in the Xray tube.
(iii) Why is C inclined at an angle of 45° ?
(iv) State the adjustment that can be made to vary
I. The quality of X-rays
(1 mark)
II. The quantity of the X-rays.
(v) An x-ray tube has an accelerating potential of 100 KV . Determine the maximum frequency of the x rays produced.
(Plank's constant $=6.63 \times 10^{-34} \mathrm{Js}, e=1.6 \times 10^{-19} \mathrm{C}$) (3 marks)
(b) In a CRO, waveform given below was displayed on the screen when the sensitivity at the Y plate was $10 \mathrm{~V} / \mathrm{cm}$ and time base set at 20 milliseconds $/ \mathrm{cm}$.

Determine:
(i) peak voltage
\qquad
\qquad
\qquad(ii) frequency of the signal
\qquad
\qquad
13. a) 88226 Ra decays into 86222 Rn by emission of an alpha particle. Write a nuclear equation for the decay
(1 marks)
b) i)What do you understand by the term half-life of a radioactive substance?
ii)A G.M tube registers 20 counts. When a radioactive source is brought close to it, it registers 3220 counts and 120 counts 30 hours later. What is the half-life of this substance? (3 marks)

i) What is the purpose of the mica windoatemeter
ii) Explain the purpose of the bromine
v) Briefly explain how GM tube works.
\qquad
\qquad
\qquad
\qquad
\qquad
14. (a) State the Ohm's Law(1 mark)
\qquad
\qquad
(b) You are provided a rheostat, 2 cells, a voltmeter, an ammeter, a switch and a fixed resistor.
i) Draw a circuit diagram that can be used to verify Ohm's law.
(2 marks)
ii) Describe how the above set up can be used to determine Ohms law.
(4 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Study the circuit diagram below and answer the questions that follow.

Calculate
(i) Determine the total resistance in the circuit.
\qquad
\qquad
(ii) The current through the 4Ω resistor
\qquad
\qquad
\qquad
\qquad
b) A ray of light travelling from water to glass makes an angle of incident of 30°. Find the angle of refraction in the glass. Refractive index of water $=\frac{4}{3}$. Refractive index of glass $=\frac{3}{2}$
(3 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
c) State the necessary and sufficient conditions for total internal reflection to occur.
(2 marks)
d) The figure below shows a human eye defect.

(i) State one possible cause of this defect. (1 mark)
\qquad
(ii) On the diagram, show how the defect is corrected.
(b) A bar magnet is moved into a coil of an insulated copper wire connected to a zero centre galvanometer as shown below

56 for marking schemes inbox 0724351706

(i) Show on the figure above the direction of the induced current in the coil
(1 mark)
(ii) State and explain what is observed on the galvanometer when the south pole of the magnet is moved into and then withdrawn from the coil.
(2 marks)
(c) A transformer has 800 turns in the primary and 40 turns in the secondary winding.

The alternating voltage connected to the primary is 240 V and current of 0.5 . A. If 10% of the power is dissipated as heat within the transformer, determine the current in the secondary coil.
(3 marks)
(d) The diagram below shows a three-pin plug.

(i) Name the colour of conductors P and Q

P
Q.
(ii) Why is the earth pin longer than the rest in the three-pin plug shown above?
(1 mark)

PAPER 3

QUESTION ONE

You are provided with the following apparatus:

- Two new size ' D ' dry-cells
- switch
- milli-ammeter
- voltmeter (0-3V)
- two enameled copper rods
- rheostat ($0-100 \Omega$)
- eight connecting wires with atleast 4 fitted with crocodile clips
- Micrometer screw-gauge (to be shared)
- 50 ml beaker (labelled, A)
- 75 ml of distilled water (labelled, B)
- solid X
- Measuring cylinder
- Thermometer
- Glass-rod for stirrer
- Sand-paper

Proceed as follows:

a) Measure the temperature of the distilled water in beaker, B

Temperature, $\theta=$ \qquad
b) Place the provided solid X into the beaker labelled, A. measure 50 ml of the distilled water and gently pour it into beaker A and stir gently until all the solid X is dissolved to form solution, C .
c) Measure the diameter, d of one of the copper rods.
i. \quad diameter, $\mathrm{d}=$ \qquad m
ii. determine the cross-section area, A of the copper rod

$$
\mathrm{A}=
$$

d) Using the sand paper, remove the insulating coating at the both ends of each of the copper rods. Now setup the apparatus as shown in figure 1 below.

Figure 12 support
e) With the help of the rheostat, set the current value to 30 mA and measure its corresponding voltage, V .
$\mathrm{V}=$ \qquad
f) Repeat the above procedure for the values of current indicated in the table, 1 below and note their corresponding voltages. Complete the table.
Table 1

Current, I (mA)	30	40	50	60	70
Current, (A)					
Voltage, V					

g) In the grid provided, plot a graph of voltage (y-axis) against current (A) (X-axis)
(5 marks)

h) Determine the slope, S of the graph
i) The voltage and current are related by the equation: $V-\frac{b I}{A}=0$ Determine the value of b.
$b=$

QUESTION TWO

59 for marking schemes inbox 0724351706

You are provided with the following apparatus:

- Complete retort-stand (clamp, boss and stand)
- Four 100 g masses (or its equivalent)
- Half metre-rule
- Metre-rule
- Some celotape
- Vernier calipers (to be shared)
- G-clamp
- Office pin
- String/thread (about 30 cm long)
- One 50 g mass
- Knife-edge

PAKI A

Proceed as follows:

a) Arrange the apparatus as shown in figure 2, below. Ensure the 10 cm mark of the half metre-rule is at the edge of the table and firmly held by the G-clamp while the pin (pointer) is at the 90 cm mark on the scale of the metre-rule. (The clamp should not be removed for the entire duration of carrying-out this experiment

Figure 13
b) Suspend one 100 g mass at the 49.5 cm mark and record the new pointer reading, P_{1}
$P_{1}=$ \qquad (1 mark)
c) Continue adding the load in 100 g steps, each time recording the pointer position. Ensure that the half metre-rule is not overloaded.
d) Determine the amount of sagging, X and complete the table, 2 below.

Table 2

Mass (g)	Load (N)	Pointer position (cm)	Amount of sagging, X (\mathbf{m})
100			
200			
300			
400			

\square

PART B

Procedure

e) Use the Vernier calipers to determine the width, a and breadth, b of the half metre-rule

Figure 14

Width, $\mathrm{a}=$ \qquad cm
breadth, $\mathrm{b}=$ \qquad cm
f) Using a loop of thread suspend the 50 g mass at the 49.5 cm mark on the half-metre rule.
g) With the 50 g mass fixed at that position adjust the position of the half-metre rule on the knife edge until it balances horizontally as shown in figure 4.

Figure 15
h) At the balance position, read off the length x and y and record in table 3 .
i) Using the values of x and y obtained in ' h ' above, determine the weight, W of the half metre-rule
(3 marks)
$\mathrm{W}=$ \qquad
j) Move the suspended mass 2 cm towards the centre of the rule and repeat parts (g) and (h) to obtain other values of x and y so as to complete table 3 .
(4 marks)
Table 3

Position of the mass of $\mathbf{5 0 g}$	X (cm)	Y (cm)
49.5 cm mark		
47.5 cm mark		
45.5 cm mark		
43.5 cm mark		
41.5 cm mark		

k) Given that quantity, P is given by: $p=\frac{W}{g\left(5 a b \times 10^{-5}\right)}$; determine the value of $\mathrm{P} \quad$ (3 marks)

1) State the significance of the quantity, P
(1 mark)

KCSE REPLICA 4

PAPER 1

PAPER 1

SECTION A (25 marks)

Answer all the questions in this section in the spaces provided.
1 A micrometer screw gauge with a zero error -0.02 mm was used to measure the diameter of a marble whose actual radius is 2.17 mm . Determine the reading expected and hence draw the scale seen on the gauge $($ Pitch $=0.5 \mathrm{~mm})$. $(2$ marks $)$

2 Explain the variation of density of water when its temperature falls from $10^{\circ} \mathrm{C}$ to freezing point. (2 marks)

3 The figure below shows two identical thermometers \mathbf{A} and \mathbf{B} placed near and at equal distances on either sides of a hot metal plate painted black on the side \mathbf{A} and silvery on side \mathbf{B}.

State and explain the observation made on the reading of the thermometers after some minutes.
(2 marks)

4 A body is acted upon by a force of 10 N towards the right hand side and 6 N towards the left hand side. Determine the resultant force.
(2marks)

5 The figure below a uniform wooden plank of length 4 m and weight 10 N . The plank is held at equilibrium by a weight of 40 N placed at one end as shown.

6 The figure shows a non-viscous fluid that is not compressible moving through a pipe of varied cross-sectional area.

$7 \quad$ State the S.I unit of luminous intensity.
8 In terms of intermolecular forces, explain the difference between liquid and gaseous state.
(2marks)

9 The figure shows a vessel resting on a horizontal bench.

State and explain the effect on the stability of the vessel when it is filled with water.
(2marks)
10 The figure below shows a planet Venus orbiting the sun in a circular orbit at constant speed.

Venus
(i) State what provides the centripetal force.
(1 mark)
(ii) Indicate the direction of centripetal force on the planet.
(1 mark)

11 On the axes below, sketch displacement time graph for an accelerating body. (1mark)

12 The figure shows a capillary tube dipped in water.

State two differences that will be observed when water is replaced with mercury in the set up above. (2 marks)

13 Water is known to boil at $100^{\circ} \mathrm{C}$. A student heated some water and noticed that it boiled at $101^{\circ} \mathrm{C}$. State two possible reasons for this observation.
(2 marks)

SECTION B (55 marks)
Answer all the questions in this section in the spaces provided.
15 (a) State Archimedes' principle.
(1mark)
(b) The figure shows a hydrometer.

(i) State the reason why lead shots are fixed at the bottom of hydrometer.
(1 mark)
(ii) State the letter in the figure which represents a greater density.
(1 mark)
(c) An ordinary hydrometer of mass 30 g floats with 4 cm of its stem out of the water. The area of the cross - section of the stem is $0.90 \mathrm{~cm}^{2}$. Taking density of water $=1.0 \mathrm{~g} / \mathrm{cm}^{3}$.
Determine the:
(i) mass of the water displaced.
(1mark)
(ii) Volume of water displaced.
(iii) Volume of stem above water.
(2marks)
(iv) Total volume of the hydrometer.
(v) Length of stem above the surface when it floats in a liquid of relative density 1.5 .
(e) A balloon is filled with a gas which is lighter than air. It is observed to rise in air up to a certain height. State a reason why the balloon stops rising.

(1 mark)

(f) The figure shows a bucket of water.

Explain why manufacturers prefer the shape shown above as a container for holding liquids such as water.

16 (a) The figure shows a block hanging at rest from a ceiling by a piece of rope.

Fig. 9

Use the figure to answer question 16 (a) and (b)
(i) Both gravitational force and tensional force act on the system. State a reason for the presence of each force:
(I) Gravitational force.
(II) Tensional force (1mark)
(ii) Air resistance and normal reaction are absent (do not act on the system). State a reason for each.
(I) Air resistance.
(1 mark)
(II) Normal reaction
(1mark)
(b) The figure shows a brick resting on an incline plane at an angle θ to the horizontal. The weight W and the frictional force, F_{r} are shown.

(i) On the same diagram show with an arrow one other force acting on the block and name the force.
(1mark)
(ii) A runway for an airport is designed such that the lowest acceleration rate for the plane is $3 \mathrm{~m} / \mathrm{s}^{2}$. The take off speed for the plane is $65 \mathrm{~m} / \mathrm{s}$. Determine the minimum length for the runway.
(2 marks)
(c) A motor cyclist wears a helmet lined on the inside with sponge. Explain how this minimizes injuries to the motorists head when involved in an accident.
(2 marks)

17 (a) The figure below shows masses A, B and C placed at different points on a rotating table.

The angular velocity ω, of the table can be varied.
(i) State two factors that determine whether a particular mass slides off the table or not. (2marks)
(ii) It is found that the masses slide off at angular velocities $A_{A}, \omega \omega_{B}$ and ω_{c} respectively. Arrange the values of $\omega_{\mathrm{A}}, \omega_{\mathrm{B}}$ and ω_{C} in decreasing order.
(1mark)
(b) A block of mass 200 g is placed on a frictionless rotating table while fixed to the centre of the table by a thin thread. The distance from the centre of the table to the block is 15 cm . If the maximum tension the thread can withstand is 5.6 N , determine the maximum angular velocity the table can attain before the thread cuts.
(4marks)
(c) State pressure law of an ideal gas.
(d) When the temperature of a gas in a closed container is raised, the pressure of the gas increases. Explain how the molecules of the gas cause the increase in pressure.
(2 marks)
(e) State one assumption for the experiments carried out to verify the gas laws.
(1 mark)
(f) A constant mass of hydrogen gas occupies a volume of $4.0 \mathrm{~cm}^{3}$ at a pressure of $2.4 \times 10^{5} \mathrm{~Pa}$ and temperature of $15^{\circ} \mathrm{C}$. Determine its volume at a pressure of $1.6 \times 10^{5} \mathrm{~Pa}$ when the temperature is doubled.
(3 marks)

18 (a) State what is meant by specific latent heat of vaporization. (1mark)
(b) In an experiment to determine the specific latent heat of vaporization of water, steam at $100{ }^{0} \mathrm{C}$ was passed into water contained in a well lagged copper calorimeter.
The following measurements were made:-
Mass of calorimeter

$$
=\quad 50 \mathrm{~g}
$$

Initial mass of water $\quad=\quad 70 \mathrm{~g}$
Initial temperature of water $=5^{\circ} \mathrm{C}$
Final mass of water + Calorimeter + condensed steam $=123 \mathrm{~g}$
Final temperature of mixture $=30^{\circ} \mathrm{C}$
Specific heat capacity of water $\quad=\quad 4200 \mathrm{JKg}^{-1} \mathrm{k}^{-1}$
Specific heat capacity of copper $=390 \mathrm{JKg}^{-1} \mathrm{k}^{-1}$
(i) Determine the:-
(I) Mass of condensed steam
(2marks)
(II) Heat gained by water and calorimeter.
(ii) Given that L is the specific latent of heat of vaporization of steam:
(I) Write an expression for the heat given out by steam. (1mark)
(II) Determine the value of L.
(2marks)
(c) The figure shows two similar containers with equal amounts of methylated spirit at room temperature. A draught is blown over container A and their temperatures taken after sometime.

State and explain one that will have a lower temperature. (2marks)
19 (a) Two gear-wheels have 80 teeth and 20 teeth and they lock with each other. They are fastened on axles of equal diameter such that equal weight of 150 N attached to the string around the axle will just raise 450 N on the other axles.
Determine:
(i) the mechanical advantage.
(ii) the velocity ratio.
(iii) The efficiency of this machine.
(b) State any one possible way of increasing velocity ratio of wheel and axle. (1mark)
(c) A Loudspeaker is a transducer. Explain.

PAPER 2

SECTION A (25 marks)

Answer all the questions in this section in the spaces provided.
1 The figure shows the path of light after striking two mirrors at an angle.

2 In a textile industry, the machines experience electrostatic forces at certain points. Suggest one method of reducing these forces.
(1mark)

3 A positively charged rod is brought near the cap of a leaf electroscope. The cap is then earthed momentarily by touching with the finger. Finally, the rod is withdrawn. The electroscope is found to be negatively charged. Explain how this charge is acquired.
(2 marks)

4 (a) The figure shows a conductor carrying current placed within the magnetic field of two magnets.

Comple
:e F that acts on the conductor.
(b) State the reason why soft iron is used as a core of the coil of an electric bell.
(1 mark)

5 The figure shows wave fronts in a ripple tank approaching a shallow region in the tank.

Complete the diagram to snow the wave tronts as they pass over the snallow region and after leaving the region.
(2 marks)
6 State one advantage of a lead-acid accumulator over a nickel-iron accumulator.
(1 mark)
$7 \quad$ Four bars of metal $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z are tested for magnetism. X attracts both W and Y but not Z . Z does not attract W, X or Y . W and Y sometimes attract one another and sometimes repel one another. State the conclusion you can draw about:
(a) $\operatorname{Bar} \mathrm{W}$
(1 mark)
(b) Bar X
(1 mark)

8 An observer watching a fireworks display sees the light from an explosion and hears the sound 4 seconds later. Determine how far the explosion was from the observer. (Speed of sound in air $330 \mathrm{~m} / \mathrm{s}$).
(3marks)
$9 \quad$ An object placed 15 cm from a convex lens forms an upright image which is magnified two times. Determine the focal length of the lens.
(2 marks)

10 (a) The figure shows light travelling from a less dense medium to a more dense medium.

Show the direction of the refracted ray.
(1 mark)
(b) State any one condition necessary for total internal reflection to take place.
(1 mark)
11 An electric bulb rated, 40 W is operating on 240 V mains. Determine the resistance of its filament. (2 marks)

12 The graph shows the variation of capacitance of a capacitor with voltage supplied across it.

Use the graph to determine the quantity of charge stored in the capacitor. (3marks)

13 The box contains names of seven parts of electromagnetic spectrum.

Radio waves	Microwaves	Infra-red	Visible light	Ultra violet	X-rays	Gamma rays

State the order in which they have been written.
(1mark)

SECTION B (55 marks)

 Answer all the questions in this section in the spaces provided.14 (a) P-type and n-type semiconductors are made from a pure semiconductor by a process known as "doping"
(i) State what is meant by doping. (1 mark)
(ii) Explain how the doping produces an n-type semiconductor. (2 marks)
(b) Sketch a circuit diagram that can be used to investigate p-n junction diode characteristics.
(2marks)
(c) The figure below shows an electric circuit.

When the switch, S is closed, the voltmeter shows a reading. When the cell terminals are reversed, the voltmeter reading is zero. Explain these observations.
(2 marks)
(d) Study the figure and use it to answer questions that follow.

Fig. 7
(i) Briefly explain how the circuit works to produce a rectified alternating current.
(3marks)
(ii) Draw on the diagram to show the position of the capacitor. (1mark)
(iii) State the function of the capacitor in the circuit. (1mark)
(iv) Sketch the graph of the output as seen on a CRO screen. (1mark)

15 (a) A radioactive isotope showed a count rate of 82 counts per second initially. After a time of 210 seconds, the count rate dropped to 19 counts per second. The average background count remained constant at 10 counts per second. Determine the half-life of the material.
(2 marks)
(b) The figure shows an experimental set up in a vacuum for investigating the effect of a magnetic field on the radiation emitted by a radio-active source.

The background radiation at the place is 5 counts per minute. The detectors are placed a positions A, B and C respectively. Results obtained are shown in the table below.

Positions	A	B	C
Counts / min	480	5	400

Use the table to explain which of the three types of radiations are emitted from the source.
(2marks)
(c) The figure shows a diffusion cloud chamber used for detecting radiations from a radioactive source.
(i) Explain how the cl

(ii) State the purpose of solid carbon (IV) oxide.
(1 mark)
(iii) State one advantage of the cloud chamber over a G.M tube as a detector of radioactive emissions. (1 mark)
(d) State one use of radio activity in medicine.

16 (a) A photocell has a cathode made of caesium metal when a monochromatic radiation is shone on the cathode photoelectrons are emitted. A graph of kinetic energy against frequency is drawn as shown in the figure.
(i)
(i)

(iii) Lithium metal has a higher work function than caesium. On the same axes, sketch the graph of lithium.
(1mark)
(iv) State what the term monochromatic means.
(1mark)
(b) The maximum Kinetic energy of the electrons emitted from a metallic surface is $1.6 \times 10^{19} \mathrm{~J}$ when the incident radiation is $7.5 \times 10^{4} \mathrm{~Hz}$. Determine the minimum frequency of radiation for which electrons will be emitted. (Planck's constant $=6.6 \times 10^{-34} \mathrm{Js}$)
(3marks)

17 (a) The figure shows the features of a cathode ray oscilloscope.

(i) Name the parts A and B. State role played each of the parts A and B.
(2 marks)
A
B
(ii) Explain how electrons are produced.
(iii) State one factor considered when choosing the material for the cathode.
(1 mark)
(b) The figure shows the trace on the screen of an a.c signal connected to the y-plates of a C.R.O with the time base on.

Given that the time base control is $100 \mathrm{~ms} / \mathrm{div}$ and the y -gain is at $120 \mathrm{~V} /$ division, determine:
(i) the frequency of the a.c signal
(2 marks)
(ii) the peak voltage of the input signal
(2 marks)
(c) The figure shows the features of an X-ray tube.

(i)

(2 marks)

A
B
(ii) Explain how a change in the potential across PQ changes the intensity of the X-rays produced in the tube. (2 marks)
(iii) State the property of lead which makes it suitable for use as a shielding material. (1 mark)
18. (a) State Lenz's law of electromagnetic induction.
(b) The figure shows a coil and a magnet being removed from the coil.

Indicate the direction of flow of current on the coil.
(c) The primary coil of a transformer has 1200 turns and the secondary coil has 60 turns. The transformer is connected to a 240 V a.c source. Determine:
(i) the output voltage
(ii) the output current when the primary coil has a current of 0.5 A . (Assume there is no energy loses)
(2 marks)
(d) One of the primary ways in which power is lost in transformers is through eddy currents. State how eddy currents can be minimized.(1 mark)
(e) Give a reason why appliances which draw current from a ring's main circuit have a third cable connected to the earth.
(1mark)
(f) Determine the cost of using an electric iron rated 1500 W , for a total of 30 hours given that the cost of electricity per kWh is Ksh 8.
(3 marks)

PAPER 3

Question 1

PART A

You are provided with the following:

1. Metre rule.
2. Vernier Callipers.
3. 300 g mass
4. Two knife edges.
5. Thread

Proceed as follows:

(a) Place the metre rule on the knife edges such that each is 5 cm from the end.

Ensure the mm scale is facing upwards. Set the distance between the knife edges, $\mathrm{L}=900 \mathrm{~mm}$.
(b) Place the vernier callipers vertically against the metre rule at 50 cm mark with the depth gauge lowered to touch the bench.
(i) Record the height h_{o} of the upper edge of the metre rule at the 50 cm mark
$h_{0}=$ \qquad cm \qquad mm
(1mark)
(ii) Using the thread provided hang the 300 g mass at 50 cm mark of the metre rule ensuring it does not touch the bench. Measure and record the height h of the upper edge of the metre rule from the bench at the 50 cm mark.
$\mathrm{h}=$ \qquad cm \qquad mm
(iii) With the 300 g mass hanging at the 50 cm mark, adjust the position of the knife edges so that the distance L is 600 mm with the knife edges equidistant from the 50 cm mark i.e. at 20 cm from each end.
Measure and record the height h of the upper edge of the metre rule at 50 cm mark.
$\mathrm{h}=$ \qquad cm \qquad mm
(1mark)
Table
77 for marking schemes inbox 0724351706

Length L(mm)	900	600
Height h(mm)		
Depression, $\mathrm{d}=\left(\mathrm{h}_{\mathrm{o}}-\mathrm{h}\right)(\mathrm{mm})$		
Log L		
Log d		

(3marks)
(c) Determine the value of $s=\frac{\log 900-\log 600}{\log d_{900}-\log d_{600}}$
(2marks)
(d) Evaluate $y=\frac{1}{s}$
(e) Given that $G=\frac{\log K}{y}$ where $G=2.75$, determine the value of K . (1mark)

PART B

You are provided with the following:

1. A white screen with crosswires
2. A Mounted lens
3. A White screen
4. A Candle
5. A Metre rule

Proceed as follows:

(f) Estimate the focal length of the lens by focusing the image of a distant object on the screen provided e.g. distant window.
$\mathrm{f}_{\mathrm{o}}=$ \qquad cm
(1mark)
(g) Arrange the apparatus as shown.

With the object (cross-wires) illuminated using a candle flame placed at $x=15 \mathrm{~cm}$, move the screen until a sharp magnified image of the object is formed on the screen. Measure and record the corresponding value of y in the table.
(h) Repeat step (g) for the value of $x=18 \mathrm{~cm}$

Table (3 marks)

$x(\mathrm{~cm})$	15	18
$y(\mathrm{~cm})$		
$\frac{x+y}{x y}\left(\mathrm{~cm}^{-1}\right)$		

(i) Determine the average of $\frac{x+y}{x y}$
(2marks)
(j) Compare the average $\frac{x+y}{x y}$ and $\frac{1}{f o}$
(k) Given that $\frac{1}{f o}=\frac{y}{\left(\frac{y}{x}\right)+1}$ and $x=25 \mathrm{~cm}$. Determine the value of y. (2marks)

Question 2

PART A

You are provided with the following:

1. A voltmeter
2. A resistance wire labelled R mounted on a metre rule.
3. A metre rule.
4. A resistance wire labelled T mounted on a small piece of carton.
5. Two dry cells and a cell holder.
6. Six connecting wires, each with a crocodile clip at one end.
7. A switch.

Proceed as follows:

\Rightarrow Measure and record the e.m.f. E_{0} of the cells connected in series, $\mathrm{E}_{0}=$ \qquad V.
(1mark)
\Rightarrow Connect the circuit as shown below. Point O on the resistance wire R is at 50 cm mark of the metre rule. A and B are points on resistance wire R such that $A O=O B=x=30 \mathrm{~cm}$.

(c) Close the switch. Read and record the potential difference V across AO
$\mathrm{V}=$. \qquad Volts. (1mark)
(d) The relationship between V and x is given by:
$\frac{1}{V}=\frac{35}{x}+\frac{1}{y}$
Determine the value of y.
(2marks)
(e) Use the e.m.f. E_{0} to determine the constant k, given that:

$$
\begin{equation*}
\mathrm{k}=\frac{8}{35 \mathrm{E}_{0}} \tag{1mark}
\end{equation*}
$$

PART B

You are provided with the following:-

1. A glass beaker
2. A Bunsen burner
3. A Thermometer
4. A Stop watch
5. A Tripod stand and a Wire gauze
6. A measuring cylinder
7. Water in a container

Proceed as follows:

(f) Set the apparatus as shown in the figure.

(g) Measure $100 \mathrm{~cm}^{3}$ of water and pour it into the beaker. Take the initial temperature of the water.
$\mathrm{T}_{0}=$ \qquad .$^{0} \mathrm{C}$
(1mark)
(h) Now heat the water to a temperature of $80^{\circ} \mathrm{C}$. Switch off the gas tap and place a thermometer into the beaker and start the stop watch when the temperature is $65{ }^{\circ} \mathrm{C}$. Take the temperature $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ of water after every two minutes. Record your results in the table
Table

Time, $\mathrm{t}(\mathrm{min})$	2	4	6	8	10	12	14
Temperature, $\mathrm{T}\left({ }^{0} \mathrm{C}\right)$							
$\left(\mathrm{T}-\mathrm{T}_{0}\right)\left({ }^{\circ} \mathrm{C}\right)$							
$\log \left(\mathrm{T}-\mathrm{T}_{0}\right)$							

(i) Plot a graph of $\log \left(T-T_{0}\right)$ against Time (t).
(j) Determine the value of $\mathrm{P}\left(\log \left(\mathrm{T}-\mathrm{T}_{0}\right)\right)$ when $\mathrm{t}=0$.
(k) Determine N , where N is the antilog of P .
(5marks)
(1mark)
(1mark)
(1) Determine the temperature of the surrounding T_{R} using the expression $\mathrm{N}=65-\mathrm{T}_{\mathrm{R}}$

KCSE REPLICA 5

PAPER 1

SECTION A: (25 MARKS)

1. The figure below shows a section of a micrometer screw guage with a thimble scale of 50 divisions. When the spindle is in contact with the anvil, the device reads 0.25 mm . If the screw guage is used to measure the diameter of a spherical ball, state the actual diameter of the ball.
(2marks)

2. When washing clothes, it is easier to remove the dirt using soap in warm water than cold water. Explain. (1marks)
3. The diagram below shows a funnel inverted over a light pith ball on a table. Air is blown into the funnel as indicated on the diagram.

State and explain

Pith ball
what is likely to be observed.
(2 marks)
4. A car of mass 800 kg is initially moving at $25 \mathrm{~m} / \mathrm{s}$. Calculate the force needed to bring the car to the rest over a distance of 20 m . (3marks)
5. The figure below shows water flowing through two sections A and B of a pipe having x-sectional areas of $8 \mathrm{~cm}^{2}$ and $2 \mathrm{~cm}^{2}$, respectively.
i) Mark water

the appropriate level of in the manometer \mathbf{B}
(1mark)

82 for marking schemes inbox 0724351706

KCSE PHYSICS REPLICA SERIES 2022

ii) The velocity of water as it flows past the wider section of the pipe is $0.6 \mathrm{~ms}^{-1}$. Calculate the velocity at the narrower section.
(2marks)
\qquad
\qquad
6. A piece of metal weighs 3 N in air and 2 N when totally immersed in water. Calculate the volume of the metal. (Density of water $\left.=1000 \mathrm{Kg} / \mathrm{m}^{3}\right)$
\qquad
\qquad
\qquad
7. On the axis provided below, Sketch velocity - time graph of a body moving down a viscous fluid.

Velocity (m/s)

8. A uniform half meter rule is supported by force of 3 N and 2 N as shown in the figure below.

Determine the weight of the half meter rule
(3marks)
\qquad
\qquad
\qquad
\qquad
9. Explain why water in a pond may freeze on the surface only but not deep inside the pond. (1mark)
10. A ball is thrown upwards and returns to its starting point after 6 seconds. Calculate the maximum height reached $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11.The figure below shows a cylindrical container having hot water at $95^{\circ} \mathrm{C}$. End A is shiny while end B is dull black. At equal distances from the container is placed two identical gas jars fitted with thermometers X and Y .

(i) Compare the readings of the two thermometers after two minutes
(ii) Give a reason for your answer in (i) above
(1 mark)
12. Two ships moving parallel close to each other are likely to collide. Explain
(1mark)
13. State one physical property of a material medium which may be used to measure temperature. (1mark)

Section B (55 marks)

13. (a) Define the term heat capacity
(b) You are provided with the apparatus shown in the figure below and stop watch

Describe an experiment to determine the specific latent heat of vaporization of water using the set up. In your answers clearly explain the measurements to be made and how these measurements would be used. (4marks)
(c) A block of metal of mass 150 g at $100^{\circ} \mathrm{C}$ is dropped into a lagged calorimeter of heat capacity $40 \mathrm{JK}^{-1}$ containing 100 g of water at 25 C . The temperature of the resulting mixture is $3^{\circ} \mathrm{C}$. (Specific heat capacity of water $=4200 \mathrm{JK}^{-1}$)
Determine:
(i) Heat gained by calorimeter;
(ii) Heat gained by water;
(iii) Heat lost by the metal block;
(iv) Specific heat capacity of the metal block
14. (a) In a car, the engine drives an alternator which produces electricity that lights the headlights. List the energy changes involved.
(b) What is the power output of a pump which can raise 60 kg of water to a height of 10 m every minute? (2marks)
(c) If the efficiency of the pump in $15(\mathrm{~b})$ is 80%, how much power must be supplied? (2marks)
d) (i) The figure below shows an inclined plane and a load of mass 15 kg pulled by an effort of 100 N .

Find the efficiency of the machine
(ii) a) Draw a single pulley arrangement with a velocity ratio of 2 .

15(a) A glass capillary contains enclosed air by a thread of mercury 15 cm long when the tube is horizontal, the length of the enclosed air column 24 cm as shown.

i) What is the length of the enclosed air column when the tube is vertical with the open end uppermost if the atmosphere pressure is 750 mmHg ?
(2marks)
ii) Explain why the mercury does not run out when the tube is vertical with the closed end uppermost.
(1mark)
b) Explain why an air bubble increase in volume as it rises from the bottom of a lake to the surface. (2 marks)
c) When an inflated balloon is placed in a refrigerator it is noted that its volume reduces, use the kinetic theory of gases to explain this observation.
d) A certain mass of hydrogen gas occupies a volume of $1.6 \mathrm{~m}^{3}$ at a pressure of $1.5 \times 10^{5} \mathrm{~Pa}$ and a temperature of $22^{\circ} \mathrm{c}$. Determine the volume when the temperature is $0^{\circ} \mathrm{c}$ at a pressure of $0.8 \times 10^{5} \mathrm{~Pa}$.
(3marks)

16 a) State Archimedes principle.
b) A block of wood measuring 0.8 m by 0.5 m by 2 m floats in water. 1.2 m of the block is submerged.(density of water is $1 \mathrm{gcm}^{3}$)
(i) Determine the weight of the water displaced.
(ii) Find the force required to just make the block fully submerged. (3 marks)
e) A balloon weighs 10 N and has a gas capacity of $2 \mathrm{~m}^{3}$. The gas in the balloon has a density of $0.1 \mathrm{~kg} / \mathrm{m}^{3}$. If density of air is $1.3 \mathrm{kgm}^{-3}$, calculate the resultant force of the balloon when it is floating in air.
(3 marks)
17.(a) The moon goes round the earth at constant speed. Explain why it is true to say that the moon is accelerating.
(b) A string of negligible mass has a bucket tied at the end. The string is 60 cm long and the bucket has a mass of 45 g . The bucket is swung horizontally making 6 revolutions per second. Calculate:
(i) The angular velocity.
(1 mark)
(ii) The centripetal acceleration.
(iii) The tension on the string.
(iv) The linear velocity.
(c) A ball of mass 100 g is dropped from a height of 1.25 m above the ground surface. It rebounds to a height of 1.1 m . Calculate
(i) Velocity of the ball before impact.
(ii) Force of impact if the ball is in contact with the surface for $0.2 \mathrm{~S}(\mathrm{~g}=10 \mathrm{~N} / \mathrm{kg})$. (3marks)

PAPER 2

SECTION A: (25MARKS)

1. What is observed when the hole of a pinhole camera is enlarged?
2. State one use of a charged electroscope
3. The chart below shows an arrangement of a section of the electromagnetic spectrum

P	Q	R	UV Light	S	Gamma rays
Name the radiation represented by letter Q				$(1 \mathrm{mk})$	

4. Draw a circuit diagram to show P-N junction diode in the forward biased mode. (2mks)
5. Explain why the walls of studio are padded with woolen materials
6. (a) Define half- life as used in radioactivity
(b)The initial mass of a radioactive substance is 20 g . The substance has half-life of 5 yrs.Detemine the mass remaining after 20 yrs .
(2mks)
7. Give a reason why it is necessary to leave the caps of the cells open when charging lead-acid accumulator
8. (a) State one property of soft iron that makes it suitable for use as a transformer core.
(b)The primary coil of a transformer has 1200 turns and the secondary coil has 60 turns. The transformer is connected to a 240 V a.c source. Determine the output voltage.
(3mks)
9. State two ways of minimizing electrical power losses during transmission
10. A convex mirror is preferred to a plane mirror for use as a driving mirror. Explain why. (1mk)
11. An electric bulb is rated $60 \mathrm{~W}, 240 \mathrm{~V}$. Determine the current that flows through it when it is connected to a 240 v supply
12. The figure below shows a defect of vision

Rays from a

(i) Name the defect.
\qquad
\qquad
(ii) List two possible causes of the defect.
\qquad
\qquad
\qquad
\qquad
13. A broadcasting station produces radio waves of wavelength 600 m . Determine their frequency in MHz (speed of air is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

SECTION B (55MARKS)

14. (a) Define the refractive index of a medium
(b) The figure below shows a ray of light incident on a glass-air interface

Given that the refractive index of the glass is 1.5 , determine angle θ
(c) State one condition for total internal reflection to occur
(d) The diagram below shows a narrow beam of white light shone onto a glass prism

(i) What is the phenomena represented in the diagram?
(ii) Name the colours at A and at B
(iii) Explain the reason for your suggestion of the colours named above. (1mk)
(iv) What is the purpose of the slit.
15. (a) State one factor that affect the resistance of a metallic conductor
(b) The figure below shows resistors in a circuit. The internal resistance of the battery is negligible

(i) Calculate the effective resistance of the circuit
(ii) Find the total current in the circuit
(iii) Find the P.d between P and Q
(c) What is the effect of decreasing the distance between the plates of a parallel plate capacitor on the capacitance
(d) The figure below shows electrical circuit with three capacitors A, B and C of capacitance $5 \mu \mathrm{~F}, ~ 6 \mu \mathrm{~F}$ and $4 \mu \mathrm{~F}$ respectively connected to a 12 V battery

Determine
(i) The combined capacit e of the three capacitors
(ii) The potential difference across the capacitor B
16. (a) Name two factors which determine the frequency of sound from a stretched wire at room temperature
(b) The figure below shows two loud speakers S_{1} and S_{2} connected to a signal generator

(1mk)
(ii) Give reasonsfor observation above
(iii) Another observer walks along AA_{1}, state and explain what he observed (2mks)
(c) A stretched string is vibrating between two fixed ends. The figure shows how the string is vibrating

(i) State the name of:
(2mks)
[I] Distance a:
[I] Distance b:
(ii) On the diagram, label the node and the antinode
17. The figure below shows a block diagram of a cathode ray oscilloscope(CRO)

(a)(i)State the names of the parts labelled B_{1} and B_{2}
(ii)State and explain the function of the part marked A
(ii)Why is the tube highly evacuated?
(b)Give a reason why the target in an X-ray tube is made of tungsten or molebdnum (1mk)
(c) X-rays are used for detecting cracks inside metal beams.State with a reason which type of X- rays is used. (2mks)
(d) In a certain X-ray tube the electrons are accelerated by a p.d of 12 kV .Assuming all the energy goes to produce X-rays, determine the frequency of the X-rays produced .(Planks constant $\mathrm{h}=6.62 \times 10^{-34} \mathrm{Js}$ and charge of an electron $=1.6 \times 10^{-19} \mathrm{C}$) (2 mks)
18.(a) state two factors that affect photoelectric emission
(b)Light of wavelength $4.0 \times 10^{-7} \mathrm{~m}$ is incident on two different metal surfaces, nickel and potassium (Take speed of light as $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and planks constant $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$)
(i)Determine the energy of the incident radiation
(ii)If the work function of nickel is $8.0 \times 10^{-19} \mathrm{~J}$ and that of potassium metal is $3.68 \times 10^{-19} \mathrm{~J}$,state with a reason which of the two metals given light will eject electrons
(iii)Determine the velocity of the emitted electrons from the metal surface in b (iii). (Take mass of an electron as $9.1 \times 10^{-31} \mathrm{~kg}$)

PAPER 3

You are provided with the following:

- 2 new dry cells size D.
- A cell holder.
- A switch.
- An ammeter ($0-1 \mathrm{~A}$)

91 for marking schemes inbox 0724351706

- A voltmeter ($0-5 \mathrm{~V}$)
- 6 connecting wires, 3 with crocodile clips.
- Nichrome wire mounted on the metre rule labelled X.
- A micrometer screw gauge (to be shared).

Proceed as follows:

(a) Connect the circuit as shown in the figure below.

(b) Measure the voltage, E before closing the switch.

$$
\mathbf{E}=
$$

(c) Adjust the length L of the wire 0.2 m , close the switch S and read the value of current and record in the table below.
(d) Repeat the procedure in (c) above for the value of length, \mathbf{L} and fill the table for $\frac{\mathbf{1}}{\mathbf{I}}$. (5mks)

Length (m)	0.2	0.3	0.4	0.5	0.6	0.7
Current I(A)						
$\frac{\mathbf{1}}{\mathbf{I}}\left(\mathbf{A}^{-1}\right)$						

(e) On the grid provided plot a graph of $\frac{\mathbf{1}}{\mathbf{I}}$ (y axis) against L .

(5 mks)
(f) Determine the gradient of the graph.
(g) (i) Measure the diameter of the wire in three points using micrometer screw gauge. (1mk)

$$
\mathrm{d}_{1}=
$$

$$
\mathrm{d}_{2}=
$$

$$
\mathrm{d}_{3}=
$$

Averaged $\mathbf{d}=$
(1mk)

93 for marking schemes inbox 0724351706

(ii) Determine the cross-section area, A of the wire.
(h) From the equation $\frac{\mathbf{1}}{\mathbf{I}}=\frac{\boldsymbol{K L}}{\boldsymbol{A E}}+\frac{\boldsymbol{Q}}{\boldsymbol{E}} \quad$ determine;
(i) the value of K .
(2mks)
(ii) the value of Q .

QUESTION 2

PART A

a) You are provided with the following:

Triangular glass prism
Four optical pins
Thermometer
94 for marking schemes inbox 0724351706

250 ml beaker Soft board source of boiling water

Plain paper
Stopwatch
Four office pins

Proceed as follows

a) Fix the plain paper on the soft board using the office pins.
b) On the plain paper, draw line XY. Mark a point M on its midpoint. Draw a normal N at M to XY . Draw line RM such that angle $\mathrm{RMN}=50^{\circ}$.
(This paper will be collected at the end of the experiment)

c) Place the glass prism such that one edge AB of the prism is in line with XY. Accurately draw the outline ABC of the prism
d) Place optical pins $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$ on the line RM
c) Through edge BC observe the images of $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$. Fix $\mathbf{P}_{\mathbf{3}}$ and $\mathbf{P}_{\mathbf{4}}$ so that $\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{\mathbf{3}}$ and $\mathbf{P}_{\mathbf{4}}$ lie on straight line.
d) Remove the pins; construct straight line from \mathbf{P}_{4} through \mathbf{P}_{3} to meet side BC at D , join M to D .
i) Measure angle \mathbf{r}_{1}. (1mk)

$$
\mathbf{r}_{1}=
$$

\qquad
ii) Produce $\mathbf{P}_{4} \mathbf{P}_{3}$ to meet RM produced. Measure angle d.
\qquad
iii) Draw the normal at D and measure the angle \mathbf{r}_{2}.
r2
e) Given that $\mathrm{R}=\mathbf{r}_{1}+\mathbf{r}_{2}$. Calculate \mathbf{R}
f) Given that $\mathbf{n}=\frac{\sin \left(\frac{R+d}{2}\right)}{\sin \left(\frac{R}{2}\right)}$, find the value of n .
g) Given that $\boldsymbol{n} \boldsymbol{\operatorname { s i n }} \boldsymbol{k}=\mathbf{1}$, find the value of \mathbf{k}
h) What Physical property does \mathbf{n} represent?

PART B

(Read all the instruction before starting this part)

i) (I) Using the thermometer, measure and record the temperature of the room, $\boldsymbol{\theta}$.
θ. \qquad ${ }^{\circ} \mathrm{C}$.
(II) Using the 250 ml beaker, collect 200 ml of hot water from the boiling source. Place the thermometer into the hot water and wait until it cools to $\mathbf{8 0}{ }^{\circ} \mathrm{C}$ the start the stopwatch and record time \mathbf{t}_{1} it takes to cool to $75{ }^{\circ} \mathrm{C}$.
t 1 \qquad seconds.
(III) Wait until the water cools to $70^{\circ} \mathrm{C}$ and then start the stopwatch and record the time \mathbf{t}_{2} it takes the water to cool to $65{ }^{\circ} \mathrm{C}$
t_{2} \qquad seconds.
j) Determine the rate of temperature change $\boldsymbol{\rho}$ and $\boldsymbol{\beta}$ in the two intervals.
(i) $\rho=\frac{77.5-\theta}{t_{1}}$
(2mks)
(ii) $\quad \boldsymbol{\beta}=\frac{67.5-\boldsymbol{\theta}}{\boldsymbol{t}_{2}}$
k) State with reason how the rate of change of temperature between $50^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$ compares with $\boldsymbol{\rho}$ (2mks)

KCSE REPLICA 6

PAPER 1

SECTION A (25 marks)

Answer ALL the questions in the spaces provided.

1. A rectangular container measures 2 cm by 3 cm by 5 cm . What is the weight of mercury that will fill the container to the brim. (Take $g=10 \mathrm{~N} / \mathrm{kg}$ and density of mercury $\left.=13600 \mathrm{~kg} / \mathrm{m}^{3}\right) .(3$ marks $)$
2. A vernier calliper has a zero error of -0.02 cm . Draw the section of the calliper scale when used to take an actual measurement of 4.85 cm .
(2 marks)
3. Figure one below shows a beaker placed on a bench. A block of ice is placed in a beaker as shown below.

Fig 1
State and explain the change in the stability of a beaker when ice melts. (2 marks)
4. Figure 2 below shows horizontal copper wire tightly fixed on two stands. A mass P is suspended from the wire using a string that can freely slide.

Fig 2

The copper wire is then heated for sometime. State and explain what happens to mass P.(2 marks)
5. Water flows through a pipe with different cross-section areas at a rate of $7.7 \times 10^{2} \mathrm{~m}^{3} / \mathrm{s}$. If the pipe has a diameter of 7 mm , determine the velocity of water through the pipe at that particular section.
(3 marks)
6. Apart from friction, name another factor that reduces efficiency in machine. (1 mark)
7. Two forces act on a trolley as shown below;

Find: the acceleration of the trolley. (3 marks)
8. State the factors that affect the rate of flow of heat through a metal conductor.
9. Sketch a graph of volume of a fixed mass of a gas against pressure on the axes below. (1 mark)

10. A form three student heats 5 kg of water to a temperature of $80^{\circ} \mathrm{C}$. When he added X kg of water at $15^{\circ} \mathrm{C}$, the mixture attains a temperature of $40^{\circ} \mathrm{C}$. Determine the value of X . (3marks)
11. A uniform rod of length of 5 m and a mass of 6 kg is pivoted at 3.8 m mark. The rod is held horizontally by a vertical rope at 5 m mark as shown in figure 3 below.

Calculate tension on the rope.
(3 marks)

SECTION B: 55 marks)

12. a) i) State the law of conservation of energy.
ii) Explain why it is easier to use a thick screw driver than a thin one. (1 mark)
b) The figure below shows a force-distance graph for a car being towed on a horizontal ground.

i) Calculate the total work done.
(3 marks)
ii) If the velocity just before reaching point D is $0.6 \mathrm{~m} / \mathrm{s}$, calculate the power developed by the source providing the force at this point.
(1 mark)
c) An electric pump can raise water from a low level reservoir to a high level reservoir at a rate of $3.6 \times 10 \mathrm{~kg} / \mathrm{h}$. The vertical height that water is raised is 400 m . If the rate of energy loss in form of heat is 200 kw , calculate the efficiency of the pump.
(3 marks
13. a) State Newton's second law of motion. (1 mark)
b) Why is it easier to stop a saloon car than a bus moving at the same velocity (2 marks)
c) A bullet of mass 20 g moving at $200 \mathrm{~ms}^{-1}$ hits and gets embedded in a wooden block of mass 450 g that is suspended freely on a light inextensible string at a height of 5 m above the ground. If the string breaks on impact, calculate:
i) the velocity of the block immediately after impact.
(2marks)
ii) the time taken by the block to strike the ground.
(2 marks)
iii) the horizontal range of the block. (2 marks)
14. a) State two properties of mercury that makes it a suitable thermometric liquid. (2 marks)
b) Figure below shows a six's maximum and minimum thermometer.

i) What is the thermometric liquid in the thermometer
(1 mark)
ii) Give a reason why vapour in bulb B is saturated.
(1 mark)
iii) Describe how the thermometer above works.
(3 marks)
iv) At what points is reading of temperature taken from the thermometer.
15. a) State one factor that affects freezing point of distilled water.
(1 mark)
b) Figure below illustrates an experiment in which electrical energy is used to determine specific latent heat of fusion of ice.
i) Complete the circuit to show connection of essential circuit components. (3 marks)
ii) In the above experiment the following readings were obtained when heater was switched on for 10 minutes.

Voltage - 8.0 V
Current - 2.25A
Temperature rise $-10^{\circ} \mathrm{C}$
At the end of the experiment 400 g of water at $0^{\circ} \mathrm{C}$ was collected in the beaker. Determine latent heat of fusing of ice.
(3 marks
iii) State any assumption made in (ii) above.
16. a)i) What is the importance of banking a road in corners?
(1 mark
ii) Explain why wet clothes put in a drum which has holes at the bottom get dried faster when the drum of drying machine is rotated at high speed.
(2 marks)
b) A turntable of a record player makes 60 revolutions per minute. Calculate.
i) Angular velocity in rads/second.
ii) The linear acceleration at a point 0.18 M from the centre.
(3 marks)
17.a) In an experiment to determine the density of a liquid, uniform metal cylinder of cross-section area $6.0 \mathrm{~cm}^{2}$ and length of 4.2 cm was hang from a spring balance and lowered gradually into liquid. The graph below shows upthrust plotted against, lengths submerged.

From the graph, determine:
i) Value of upthrust when the cylinder is fully submerged.
(1 mark)

101 for marking schemes inbox 0724351706
ii) The density of the liquid in SI units.
b) A solid displaces $5.0 \mathrm{~cm}^{3}$ of paraffin when floating and $20 \mathrm{~cm}^{3}$ when fully immersed in it. Given that the density of paraffin is $0.8 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the density of the solid.
(3 marks)

PAPER 2

Section I (25 marks)

1. Figure 1 shows a pencil lying in front of a plane mirror. The pencil is moved 2 cm towards the mirror in the same orientation.

Figure 1

Determine the distance between the new position of the tip of the pencil and its image. (2mks)
2. a) State the basic law of magnetism.
b) Figure 2 shows two bar magnets, one whose poles are labelled and a second one whose poles are labelled X and Y . Iron nails are attracted to the lower ends of the magnets as shown.

Figure 2

Identify pole \mathbf{X}
3. State the reason why convex mirror is preferred over a plane mirror for use as driving mirrors in cars.
(1mk)
4. Figure 3 shows the displacement-time graph for a certain wave.

102 for marking schemes inbox 0724351706

Figure 3
a) Determine the frequency of the wave.
b) On the same diagram, draw a wave with half the amplitude and twice the frequency of the one shown.
5. a) State the main difference between primary chemical cells and secondary chemical cells. (1 mk)
b) State how the design of a dry Lechlanche cell reduces polarization.
6. Figure 4 shows a wave incident on a narrow opening.

Figure 4

Draw the appearance of the wave after passing through the opening.
7. A student stands between two classroom walls and claps. After 0.6 seconds, she hears the first echo and hears the second echo after 0.8 seconds. Determine the distance from the student to the further wall. Take speed of sound in air $=320 \mathrm{~m} / \mathrm{s}$. (3mks)
103 for marking schemes inbox 0724351706
8. The list below is some radiations in the electro-magnetic spectrum. Red light, Gamma rays, Ultra violet radiations and Blue light. Arrange the radiations in order of increasing wavelength. (1mk)
9. A controlled amount of pentavalent (donor) impurity atoms added in to a pure semi conductor such as silicon to improve its conductivity.
a) Give name to the process above.

$$
(1 \mathrm{mk})
$$

b) What type of semiconductor is obtained in the above process?
10. Figure 5 shows the cross-section of two bar magnets and a current carrying conductor held between them. The direction of current is into the paper.

Figure 5

a) indicate with an arrow the direction of force experienced by the conductor.
b) State one way in which the force on the conductor above can be reduced.
11. a) State the reason why electrical power is transmitted over long distances at very high voltage and low current.
b) An electric bulb is labelled 100 W 20 V . Determine the resistance of its filament at its operating temperature.
(2mks)
12. a) State Ohm's law.
b) Figure 6 shows an electrical circuit.

Figure 6
Determine the Ammeter reading in a closed circuit.

SECTION B (55 Marks)

13. a) State Lenz's law of electromagnetic induction.
b) Figure 7 shows stationary magnet and a solenoid being moved as shown.

Figure 7
i) State with a reason the direction of deflection of the galvanometer.
(2mks)
ii) State one way through which the size of deflection of the galvanometer can be decreased.
(1mk)
c) State how energy losses in a transformer through eddy currents is minimized in its design.(1mk)
d) Figure 8 shows two identical coils C and D made of insulated copper wires and are placed close to each other.

Coil C is connected to DC power supply and Coil D to a galvanometer.

Figure 8
(i) State and explain what would be observed on the galvanometer immediately switch S is closed and then opened.
(2mks)
ii) How would the observation made in $\mathrm{d}(\mathrm{i})$ differ if the number of turns in coil C were doubled but those in D remain unchanged?
e) The primary coil of a transformer has 250 turns and the secondary coil has 50 turns. The primary coil is connected to a 120 V AC supply.
i) State with a reason the type of transformer described above.
ii) Determine the voltage in the secondary coils.
iii) Given that the current in the primary coil is 0.50 A and in the secondary coil is 2.0 A . Determine the efficiency of the transformer.
14. a) State the law of electrostatic charges.
b) Figure 9 shows a highly positively charged glass rod being brought slowly near the cap of a negative charged gold leaf electroscope. It is observed that the leaf initially falls and then rises.

Figure 9
Explain this observation.
c) Figure 10 shows an electric circuit used to charge a capacitor C . When switch is closed, it is observed that, the millimeter records some current which gradually reduces to zero with time.

Figure 10
Explain the observation
d) Figure 11 shows an electrical circuit with three capacitors of $10 \mu \mathrm{~F}, 2 \mu \mathrm{~F}$ and $3 \mu \mathrm{~F}$ capacitance connected to a 240 V supply.

i) The effective capacitance of the capacitor combination.
(2mks)
ii) The charged stored in the circuit.
iii) The potential difference across the $2 \mu \mathrm{~F}$ capacitor
15. a) State one condition necessary for total internal reflection to occur.
b) Figure 12 (a) shows a ray of light travelling in an optically denser medium to an optically rarer medium. The angle of incidence \boldsymbol{i} and angle of refraction \mathbf{r} are also shown.

Figure 12 (a)
Figure 12 (b)
Complete Figure 12 (b) to show the path of refraction ray when the angle of incidence is increased to reach critical angle.
(1mk)
c) An optical pin placed at the bottom of a glass measuring cylinder filled with a liquid and appears to be 11.4 cm below the surface of the liquid. If the refractive index of the liquid is 1.48 . Determine The height of the column of the liquid in the measuring cylinder.
(2mks)
d) i) State one reason why glass prisms are preferred to plane mirrors in their use in periscope. (1mk)
ii) Figure 13 shows two right angled glass prism arranged to be used in a periscope.

An object is placed besides one prism as shown.

Figure 13

Complete the diagram by showing the path of rays of light from the object until they reach the eye.(1mk)
e) In an experiment to determine the focal length of a lens, you are provided with the following apparatus.

- A converging lens and a lens holder
- A lit candle
- A metre rule
- A white screen
i) State one measurements that you would take in the experiment.
ii) In another experiment similar to the above, a graph showing the relationship between $\frac{1}{\mathrm{~V}}$ and $\frac{1}{\mathrm{u}}$ was plotted as shown in figure 13 .

- Use the graph to determine the focal length, f of the lens.
(2mks)
e) Figure 14 shows a defeat of the eye

Figure 14
i) State two possible causes of the defect.
(2mks)
ii) Explain how the defect is corrected.
16. a) i) In an X-ray tube explain why
I. The anode is made up of copper.
II. The cathode and the anode are connected to a high potential difference between them. (1mk)
ii) State the adjustments made in an X-ray tube in order to decrease the intensity of X-ray. (1mk)
iii) State the property of X-rays that makes it used in detecting foreign objects in human bodies.
(1mk)
b) i) Explain the meaning of the term photoelectric effect.
ii) A monochromatic light frequency $6.25 \times 10^{14} \mathrm{~Hz}$ is incident on a metal surface. The minimum frequency that can cause photo emmission on the metal surface is $5.5 \times 10^{4} \mathrm{~Hz}$. Given that Planck's constant, h is $6.63 \times 10^{-34} \mathrm{Js}$.
Determine
I. The energy of the source light.
II. The work function of the metal surface.
III. The average kinetic energy of the photo electrons.
17. a) Figure 15 shows some features of a cathode ray tube.

Figure 15
i) Name parts E \& F
ii) The process through which electrons are produced.
b) i) Alpha (α) particles cause more ionization in a gas compared to Beta β) particles. Give one reason for this.
ii) The following is part of radioactive decay series. The symbols do not represent the actual symbols of the nuclides.

Determine the values of a and b
iii) A radioactive Isotope has a halflife of 5.25 years. Determine the fraction of the original mass in a sample that will remain after 42 years

PAPER 3

Question 1

1. You are provided with the following apparatus:

- $\quad 2$ size D dry cells
- $\quad 100 \mathrm{~cm}$ nichrome wire on a mm scale, labelled P at one end.
- A bulb (2.5V) and a bulb holder.
- 8 connecting wires (at least 4 with crocodile clips)
- Cell holder
- A voltmeter (0-5V)
- An ammeter (0-1A)
- A jockey
a) Connect the apparatus provided as shown in the diagram.

111 for marking schemes inbox 0724351706

b) Place the jockey at $\mathrm{L}=20 \mathrm{~cm}$ from P , then close the switch.

Record the ammeter reading and the voltmeter reading in the table below.
c) Repeat the experiment by placing the jockey at $\mathrm{L}=30,40,50,60$ and 80 cm from P .

Record your readings and complete the table below.

$l(\mathrm{~cm})$	Length	$\mathrm{I}(\mathrm{A})$	$\mathrm{Pd}, \mathrm{V}(\mathrm{V})$	$\mathrm{I}(\mathrm{mA})$	$\mathrm{Pd}, \mathrm{v}(\mathrm{MV})$	$\log \mathrm{I}$
$\log \mathrm{V}$						
20						
30						
40						
50						
60						
80						
	3 mks	3 mks	$-1 / 2 \mathrm{mk}$			

d) Plot a graph of $\log \mathrm{I}$ (y-axis) against $\log \mathrm{V}$
e) Determine the slope of the graph.
f) Give that $\log \mathrm{I}=\mathrm{n} \log \mathrm{V}+\log \mathrm{K}$ where n and k are constants of the lamp. Determine using your graph the value of:
i) $\quad \mathrm{K}$
ii) n
(2mks)

Question 2

Part A

You are provided with the following:

- A retort stand, boss and clamp.
- 2 boiling tubes
- A thermometer
- Some distilled water in a beaker labelled W
- Some liquid in a beaker, labelled L
- A 250 ml beaker containing some water.
- A measuring cylinder
- A stop watch
- A tripod stand and wire gauze
- A card board with a hole in the middle
- A burner.

Proceed as follows

a) Clamp one boiling tube on the retort stand. Measure and pour 45 ml , of the distilled water, W into a boiling tube. Set up the apparatus as shown in the figure below.

b) Heat the water in the large beaker $(250 \mathrm{ml})$ until the temperature of the distilled water reached 85 C . Remove the boiling tube from the hot water by lifting up the retort stand and placing it away from the burner.
c) Stir the water in the boiling tube using the thermometer. Record in the table below the temperature of the distilled water at intervals of 30 seconds starting at $80^{\circ} \mathrm{C}$ until it drops to $60^{\circ} \mathrm{C}$ (stir the distilled water before taking any reading).

Time in minutes	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
Temperature of $\mathrm{W}\left({ }^{0} \mathrm{C}\right)$										
Temperature of L $\left({ }^{\circ} \mathrm{C}\right)$										

Time in minutes	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5
Temperature of $\mathrm{W}\left({ }^{0} \mathrm{C}\right)$										
Temperature of $\mathrm{L}\left({ }^{\circ} \mathrm{C}\right)$										

(4mks)
d) Using the second boiling tube, repeat the procedure in b and c using 45 ml of liquid L instead of distilled water. Record your results in the same table.
e) Using the same axis on the grid provided, plot a graph of temperature (y-axis) against time for i) Distilled water, W
ii) Liquid L
(Label the graphs of L and W .
(7mks)
f) From the graph, determine:
i) the time, t taken for the distilled water to cool from $75^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$.

113 for marking schemes inbox 0724351706

$\mathrm{t}_{\mathrm{w}}=$ \qquad minutes
ii) the time, t taken for liquid L , to cool from $75^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ $\mathrm{t}_{\mathrm{L}}=$ \qquad minutes
g) Determine the constant r given that $\mathrm{r}=\frac{4.2 \mathrm{t}_{l}}{\mathrm{dt}_{\mathrm{w}}}$ where d , density of liquid, $\mathrm{L}=0.8 \mathrm{~g} / \mathrm{cm}^{3} .(2 \mathrm{mks})$

PART B

You are provided with the following:

- Copper wire of length 130 cm .
- Test tube of diameter 1.5 cm (ordinary)
- Metre rule.

Procedure

By using the wire provided, make 20 closely packed turns around the said ordinary test tube as shown.

h) Measure the length $x=$ \qquad cm
i) Use the result " X " to determine the thickness of the wire, $d=$ \qquad cm .
j) Given that the volume of the wire $V=\frac{1}{4} \pi d^{2} L$, determine the volume, V of the wire if $\mathrm{L}=120 \mathrm{~cm}$.
(3mks)

KCSE REPLICA 7

PAPER 1

INSTRUCTIONS TO CANDIDATES.

Constant: $g=10 \mathrm{~N} / \mathrm{kg}$ or $10 \mathrm{~m} / \mathrm{s}^{2}$

SECTION A: 25 MARKS

1. The figure below shows a part of micrometer screw gauge with a zero error of -0.04 mm . Write down the exact length measured. (2 marks)

2. The following figure shows a rod made of wood on one end and metal on the other end suspended freely with a piece of thread so that it is in equilibrium.

The side made of metal is now heated with a Bunsen flame. State and explain the observation that will be made after some time.
3. Estimate the size of an oil molecule if a drop of oil of volume $6.0 \times 10^{-10} \mathrm{~m}^{3}$ forms a patch of diameter 32 cm on a water surface.
4. An immersion heater rated at 180 W is placed in a liquid of mass 2 kg . When the heater is switched on for 7.5 minutes the temperature of the liquid rises by $40^{\circ} \mathrm{C}$. Determine the specific heat capacity of the liquid. (3marks)
5. Other than increase in temperature state one other way of lowering the surface tension of a liquid.
(1mark)
6. The figure below shows a uniform bar pivoted at its centre and is at equilibrium.

Determine the value of W.
7.(i) Sketch a velocity - time graph on the axes provided for an object thrown vertically upwards with initial velocity $20 \mathrm{~ms}^{-1}$ and takes 2 seconds to reach maximum height.(1 mark)
 (2 marks)
8. Inan experiment to demonstrate Brownian motion, smokewas placed in asmoke celland observed under amicroscope. State and explain the observation.
9. Stateareasonwhyaburn from steam at $100^{0} \mathrm{C}$ is moreseverethan aburn from boilingwater at the same temperature
(1 mark)
10. Explain why therate of heatflowin a conductorincreases with increaseincross-section area.
(1 mark)
116 for marking schemes inbox 0724351706
11.A piece of paper is held in front of the mouth and air blown horizontally over the paper, it is observed that the paper get lifted up. Give reason for the observation.
12. In the study of free fall, it is assumed that the gravitational force F acting on a given body of mass, m is given by $\mathrm{F}=\mathrm{mg}$. State two other forces that act on the same body. (2marks)
13.A girl in a school in Nakuru plans to make a barometer using a liquid of density $1.25 \mathrm{gcm}^{-3}$. If the atmospheric pressure in the school is $93750 \mathrm{Nm}^{-2}$. Determine the minimum length of the tube that she will require?

SECTION B (55MARKS)

ANSWER ALL QUESTIONS IN THIS SECTION
14 a) (i) State Archimedes' Principle.
(ii) A metal block weighs 1.04 N in air, 0.64 N when fully immersed in water and 0.72 N when fully immersed in a liquid. If the density of water is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$, find:
I) the density of the liquid.
II) Thedensity of the metal block.
b) A crane lifts a load of 2000 Kg through a vertical distance of 3.0 m in 6 seconds.

Determine the;
i) Work done by the crane.
ii) Power developed by the crane.
iii) Efficiency of the crane given that it is operated by an electric motor rated 12.5 kW . (2mks)
15. (A) The figure below shows a hydraulic brake system.

A force of 20 N is applied on the foot pedal connected to a master cylinder piston of area $500 \mathrm{~cm}^{2}$. This causes a stopping force of $5,000 \mathrm{~N}$ on one wheel. Calculate.
i) Pressure on the master cylinder
ii) Area of the slave cylinder piston.
iii) Velocity ratio of the system.
B) I) State the reason why a body in uniform circular motion is said to be accelerating.(1 mark)
II) A particle moving along a circular path of radius 5 cm describes an arc of length 2 cm every second. Determine:
(i) Its angular velocity.
(ii) Its periodic time.
c) A stone of mass 150 g is tied to the end of a string 80 cm long and whirled in a vertical circle at $2 \mathrm{rev} / \mathrm{s}$. Determine the maximum tension in the string.
(d) State one factor affecting centripetal force

16 a) Define "specific heat capacity" of a substance (1mark)
b) In an experiment, an aluminum block of mass 2 kg was heated using an immersion heater as shown in figure below.

The temperature of the block was recorded every minute for exactly five minutes and then the heater was switched off. A graph of temperature in ${ }^{\circ} \mathrm{C}$ against time in minutes for the experiment is shown below.

Using the graph, Suggest why;
i) The reading in the thermometer rose relatively slowly between point A and B. (1mark) 119 for marking schemes inbox 0724351706
ii) The temperature continued to rise after the heater was switched off
iii) Use the straight portion of the graph (B to C)to calculate the specific heat capacity of the aluminum given that the voltmeter reads 22.0 V and ammeter 10.0 A throughout the experiment. (3 marks)
c) Giving a reason explain why the value calculated in b) (iii) will not be accurate. (1 mark)
d) A faulty thermometer reads $40^{\circ} \mathrm{C}$ when dipped in pure melting ice and $240^{\circ} \mathrm{C}$ when in contact with steam above pure boiling water. What would the same thermometer read when put in water at $50^{\circ} \mathrm{C}$?

17 (a) A stone is thrown horizontally with a velocity of $45 \mathrm{~m} / \mathrm{s}$ from the top of a vertical tower 50mhigh. Determine:
i. The time taken by the bullet to reach the bottom of the ground (2 marks)
ii. The maximum horizontal distance covered by the bullet
b) i) Distinguish between elastic and inelastic collision.
ii) A car of mass 800 kg collides heads on with a truck of mass 5000 kg travelling at $40 \mathrm{~m} / \mathrm{s}$. The car is thrown to the bonnet of the truck which continues to move after impact at $10 \mathrm{~m} / \mathrm{s}$ in the original direction. How fast was the car moving?
(3marks)
18. Figure below shows the apparatus that a student used to investigate the relationship between temperature and pressure of a fixed mass of a gas at constant volume.

a) i) Describe how the student should ensure that all air trapped has the same temperature as indicated by the thermometer. (2 marks)
ii) Give a reason why it is necessary to ensure that before taking any reading on pressure, the liquid level should reach the level marked Y.
(b) The pressure P of a fixed mass of a gas at a constant temperature of $\mathrm{T}=200 \mathrm{~K}$ isvaried continuously and values of corresponding volume recorded. A graph P against $\frac{1}{V}$ is shown on grid below.

121 for marking schemes inbox 0724351706
(i) determine the volume of the gas when the pressure reads $2.8 \times 10^{5} \mathrm{pa}$ (2 marks)
(ii) find the value of R given that the pressure P and volume V of the gas are related by the equation $T=\frac{P V}{2 R}$, where R is a constant
(4 marks)
(c) The pressure of the air inside a car tyre increases if the car stands out in the sun for some time on a hot day. Explain the pressure increase in terms of the kinetic theory of gases.
(2 marks)
(d) A gas is put into a container of fixed volume at a pressure of $3.6 \times 10^{5} \mathrm{Nm}^{-2}$ and temperature $27^{\circ} \mathrm{C}$. The gas is then heated to a temperature of $177^{\circ} \mathrm{C}$. Determine the new pressure (3 marks)

PAPER 2

SECTION A 25MARKS.
Answer all questions in the space provided
1.

What is meant by virtual image?
2. i) Arrange the following electromagnetic waves in order of their increasing wavelength visible light, X-rays, Microwaves, infrared radiation.
\qquad
\qquad
ii) Name one device that can be used to detect infrared radiation.
3. Indicate the direction of the magnetic field in the conductor carrying current shown below. (1mk)
4. i) Define the term 'doping'. (1mk)
\qquad
\qquad
ii) The diagram below shows a $\mathrm{p}-\mathrm{n}$ junction diode.

Complete the diagram above to show how the diode can be connected in reverse bias mode. (1mk)
5. Given that the refractive index of glass is $3 / 2$ and that of water is $4 / 3$. Determine the value of angle in the figure below. (3mks)

\qquad
\qquad
\qquad
6. State two factors that determine how far X- rays penetrate a given material.
7. i) Uranium ${ }^{238} \mathrm{U}$ emits an alpha particle to become another element X as shown in the 92 equation below.

238a
U X + alpha particle \longrightarrow
92
b

123 for marking schemes inbox 0724351706

Determine the values of a and b.
\qquad
\qquad
ii) State two sources of background radiation.
\qquad
8. i) Explain why Nichrome wire is used as a heating element rather than copper.
\qquad
\qquad
ii) An electric bulb is rated $240 \mathrm{~V}, 100 \mathrm{~W}$. Calculate the amount of current through its filament.
(2mks)
\qquad
\qquad
\qquad
iii) If ten such bulbs were used in a house for lighting, determine the most suitable fuse value.
(1mk)
\qquad
\qquad
9. State two conditions for the formation of a stationary wave.
\qquad
\qquad
10. A gun is fired and an echo heard at the same place 0.6 s later. How far is the barrier which reflected the sound from the gun? $($ Speed of sound in air $=330 \mathrm{~m} / \mathrm{s})$.
\qquad
\qquad
\qquad
\qquad
11. State how polarization is reduced in a dry cell.
12. A negatively charged rod is brought near the cap of lightly charged electroscope. The leaf divergence first reduces but as the rod comes nearer, it diverges more. State the charge of the electroscope.
(1 mk)

124 for marking schemes inbox 0724351706

SECTION B (55 MARKS).

Answer all the questions in the spaces provided
13. a) State one condition under which ohm's law is obeyed in a metal conductor.
b) You are provided with three resistors R_{1}, R_{2} and R_{3} connected in parallel. If the p.d across them is V, show that an expression for the effective resistance of the three resistors is given by. $\underline{1}=\underline{1}+\underline{1}+\underline{1}$
(3mks)
$\mathrm{R}_{\mathrm{T}} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}$
c) The diagram below shows the resistors connected in a circuit.

3 V
Calculate:
i) The total resistance in the circuit.
\qquad
\qquad
\qquad
ii) Total current flowing in the circuit.
(2mks)
\qquad
d. i) State one way of increasing the capacitance of a parallel plate capacitor.
ii) The diagram below shows a simple network of capacitor.

KCSE PHYSICS REPLICA SERIES 2022

If the potential difference between X and Y is 12 V , calculate the total charge stored bythe capacitors.
(3mks)
14. a) Define Principal focus of a biconcave lens
b)The diagram below shows a virtual image of an object placed in front of a biconvex lens

Draw appropriate rays to locate the objects.
(3mks)
c). A convex lens forms a reat image five times the size of the object on a screen. If the distance between the object and screen $2 F$ cm.

F

Determine:
Image distance
\qquad
\qquad
Focal length.
\qquad
\qquad
d) The diagram below shows a defect in human eye.

(i) Name the defect.
ii) State one cause of the defect.
iii) How can the defect be corrected?
\qquad
15. a) State Lenz's law of electromagnetic induction.
\qquad
\qquad
b) The figure below shows a bar magnet being moved into a coil connected to a galvanometer in the direction indicated.

State the observation made on the galvanometer when:
The magnet is moved into the coil at a steady speed.
ii. The magnet is held stationary inside the coil.
\qquad
c) How is a transformer designed to minimize energy losses through flux leakage?
\qquad
\qquad
d) The primary coil of a transformer has 2000 turns and is connected to a 240 V a.c supply. The secondary coil has 400 turns.
i. State with a reason the type of the transformer.
\qquad
\qquad
ii. Determine the voltage in the secondary coil.
\qquad
\qquad
\qquad

KCSE PHYSICS REPLICA SERIES 2022

iii. If the current flowing in the primary coil is 0.5 A and in the secondary coil is 2.0 A determine the efficiency of the transformer.
\qquad
\qquad
\qquad
e) Electrical energy is transmitted at very high voltage and low current.
i. State how the high voltages are attained.
\qquad
ii. State two reasons why aluminum wires are preferred to copper wires for transmission over long distances. (2mks)
\qquad
\qquad
16. a) What is thermionic emission?
\qquad
\qquad
b) Explain why a cathode ray tube is evacuated.
\qquad
c) Heated cathodes are coated with oxides of such metal as barium, Strontium or thorium. Explain.
(1mk)
\qquad
\qquad
d) State one property of cathode rays.
\qquad
\qquad
e) The figure below shows the waveform displayed on C.R.O screen when an alternating voltage is applied on the Y - input. The time - base is at $1 \mathrm{~ms} / \mathrm{cm}$ and the Y - gain at $10 \mathrm{v} / \mathrm{cm}$.

Calculate:

i. The pick voltage of the input signal.
\qquad
\qquad
ii. The frequency of the a.c signal.
f) In a certain X-ray tube, the electrons are accelerated by p.d of 12 kv . Assuming that all the energy goes to produce X -rays, determine the frequency of the X rays produced.
(takeplanck'sconstant $\mathrm{h}=6.62 \times 10^{-34} \mathrm{Js}$, and the charge of an electron $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$) (3mks)
\qquad
\qquad
\qquad
\qquad
17. a) It is observed that when ultra - violet radiation is directed onto a clean Zinc plate connected to the cap of a negatively charged leaf electroscope, the leaf falls.
i. Explain this observation.
\qquad
\qquad
ii. Explain why the leaf of the electroscope does not fall when infrared radiation is directed onto the zinc plate.
(1mk)
b) State the effect on the electrons emitted by the photoelectric effect when the intensity of incident radiation is increased.
(1mk)
c) The maximum wavelength required to cause photoelectric emission on a metal surface is $8.0 \times 10^{-7} \mathrm{~m}$. The metal surface is irradiated with light of frequency $8.5 \times 10^{14} \mathrm{~Hz}$.
(Take lev $=1.6 \times 10^{-19} \mathrm{~J}, \mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}, \quad \mathrm{h}=6.63 \times 10^{-34} \mathrm{~J}$)
Determine:
i). The threshold frequency.
\qquad
\qquad
\qquad
work function of the metals in electron volts.
\qquad
\qquad
\qquad
iii) .The maximum Kinetic energy of the electrons.

PAPER 3

QUESTION 1 (20 marks)

1. You are provided with the following;

- A galvanometer
- A dry cell and a cell holder
- A switch
- A wire labelled Y mounted on a piece of wood.
- Eight connecting wires each with a crocodile clip at one end.
- A resistance wire labelled AB mounted on a millimeter scale.
- Six $100 h m$ carbon resistors
- A jockey or crocodile clip
- Micrometer screw gauge (to be shared)

Proceed as follows:

(a) Set up the circuit as shown in figure below, with Xbeing one of the 10 ohms carbon resistors.

130 for marking schemes inbox 0724351706
(b) Close the switch. Tap the jockey at various points on the wire AB and locate point P at which the galvanometer shows zero deflection, measure and record in table below the length, lwhere $l=\mathrm{PB}$.
(c) Repeat the procedure in (b) using X as two 10Ω resistors, three resistors, four resistors, five resistors and six resistors. X is the effective resistance for the parallel combination i.e. $\mathbf{X}=\frac{\mathbf{1 0}}{\mathbf{n}}$ where \mathbf{n} is the number of resistors in parallel.
(d) Record your readings in table below.

TABLE

Number of 10న Carbon resistor	One	Two	Three	Four	Five	Six
$\mathrm{X}(\Omega)$						
$L(\mathrm{~cm})$						
$\frac{1}{\mathrm{X}}\left(\Omega^{-1}\right)$						
$\frac{1}{L}\left(\mathrm{~cm}^{-1}\right)$						

(e) Plot a graph of $\frac{1}{\mathrm{~L}}$ (y-axis) against $\frac{1}{\mathrm{X}}$. $(5 \mathrm{mks})$
(f) Determine the slope m of the graph.
(g) Given that $\frac{1}{\mathrm{~L}}=\frac{\mathrm{R}}{\mathrm{KX}}+\frac{1}{\mathrm{~K}}$ where $\mathrm{K}=100 \mathrm{~cm}$. Use the graph to determine R .
(h) Measure the diameter d and the length l of wire Y .
$l=$. \qquad m
$\mathrm{d}=$ \qquad m
(i) Determine its cross-sectional area A of the wire Y .
A =. \qquad m^{2}
(j) Determine the resistivity $\boldsymbol{\rho}$ of the wire Y given that its Resistance, $\mathbf{R}=\boldsymbol{\rho} \frac{l}{\mathrm{~A}}$. (2mks

QUESTION 2 (20 marks)

PART A

You are provided with the following;

- Meter rule

131 for marking schemes inbox 0724351706

- Retort stand, clamp and boss
- A spring and with a pointer
- Three masses (a 100 g and two 50 g masses)
- Stop watch

Proceed as follows

a) Set the apparatus as shown below.

ecord the pointer readings
m. (1mk)
armine the extension of the spring, \boldsymbol{e}_{1}.

$$
\boldsymbol{e}_{1}
$$ m.

(ii) Displace the 150 g mass slightly downwards and release it to oscillate vertically. Time 20 oscillations and obtain time t_{1}.

$$
\mathbf{t}_{1} .
$$

\qquad
(iii) Find periodic time T_{1}

$$
\mathbf{T}_{1} .
$$

\qquad
(iv) Use the equation $\mathbf{T}=2 \pi \sqrt{\frac{\bar{e}}{\mathbf{p}}}$ to find the value of P_{1}.
d) (i) Load a mass of 200 g and determine the extension of the spring, \boldsymbol{e}_{2}.
\boldsymbol{e}_{2} \qquad m.
(ii) Displace the 200 g mass slightly downwards and release it to oscillate vertically. Time 20 oscillations and obtain time t_{2}.

$$
\mathbf{t}_{2} .
$$

\qquad
(iii) Find periodic time T_{1}

$$
\mathbf{T}_{2} .
$$

(iv) Use the equation $\mathbf{T}=\mathbf{2 \pi} \sqrt{\frac{\overline{\mathbf{e}}}{\mathbf{p}}}$ to find the value of P_{2}.
e) Find the average of P

$$
\mathbf{P}_{\mathrm{av}}=\frac{\mathrm{P} 2+\mathrm{p} 1}{2} \quad \quad(2 \mathrm{mks})
$$

PART B

Apparatus

- Lens and a lens holder.
- A candle
- Screen
- A metre rule.

Procedure

f) Focus a distant object and estimate the focal length, \mathbf{f} of the lens
f. \qquad mm.
(1mk)
g) Set up the apparatus as shown below.

h) Set the distance $\mathbf{s}=\mathbf{6 0} \mathbf{~ c m}$.
i) Adjust the position of the lens to position \mathbf{p} where a magnified sharp image is formed on the screen. Recordposition P.

$$
\mathbf{P}=
$$

\qquad cm.
ii) Maintaining distance \mathbf{s}, adjust the lens to position \mathbf{P} 'where a diminished sharp image is formed on the screen. Record position, \mathbf{P}^{\prime}.

$$
\mathbf{P}^{\prime}=
$$

\qquad cm.
iii) Find distance d, betweentheoriginalposition and final position of lens

$$
\mathbf{d}=
$$

\qquad cm
i) Using the formula $\boldsymbol{s}^{2}-\boldsymbol{d}^{2}=\mathbf{4 q} \boldsymbol{s}$. Find the value of \mathbf{q}.
(2mks)
j) What physical quantity do \mathbf{q} represent

KCSE REPLICA 8

PAPER 1

SECTION A (25 MARKS)

1. A piece of cotton is used to measured between two points on a ruler as shown

When the length of cotion ts wound dopoly around apen, it goos round she times.

Calculate the circumference of pen (3 marks)
2. Koome heats 5 kg of water to a temperature of $80^{\circ} \mathrm{C}$. When she adds m kg of water at $15^{\circ} \mathrm{C}$ the mixture attains a temperature of $40^{\circ} \mathrm{C}$. Determine the value of $m \quad(3 \mathrm{mks})$
3. 100 drops of oil, of density $800 \mathrm{~kg} / \mathrm{m}^{3}$ are found to have a total mass of $2 \times 10-{ }^{4} \mathrm{~kg}$. One of the drops is placed on a large clean water surface and it spreads to form a uniform film of diameter $50 \mathrm{~cm}^{2}$.
Determine; the diameter of the oil molecule.
(3 mks)
4. The figure below shows a uniform plank AB of length 10 m weighing 500 N . Two masses measuring 25 kg and 60 kg are loaded on its ends.

Determine the distance from point A where a support should be placed for the plank to balance horizontally.
5. An aircraft 300 m from the ground, travelling horizontally at $400 \mathrm{~m} / \mathrm{s}$ releases a parcel. Calculate the horizontal distance covered by the parcel from the point of release. (Ignore air resistance)
\qquad
\qquad
6. The figure below the figure below shows two experiments to investigate energy transfer in water.

gentle heating

gentle
gentle heating
heating heating
apped by
small piece of wire gauze
which thermal (heat) energy travels through the glass. (1 mk)
7. In the above experiment give a reason who the ice had to be wrapped on metal (1 mark)
\qquad
\qquad
9. Distinguish between speed and velocity.
\qquad
\qquad
\qquad
10. In the study of free fall, it is assumed that the force F acting on a given body of mass, m, is gravitational, given by $\mathrm{F}=\mathrm{mg}$. State two other forces that act on the same body.
(2marks)
\qquad
\qquad
\qquad
11. In the set up shown below, it is observed that the level of the water initially drops before starting to rise. Explain this observation.

\qquad
\qquad
12. A wise cyclist will carry a load on the bicycle's carrier and not in a rack sack on his back. Explain
\qquad
\qquad
\qquad

Section B (55 Marks)

13. (a) The figure below shows a circuit diagram for a device for controlling the temperature in a room.

(i) State the purpose of the bimetallic strip.
(ii) Describe how the circuit controls the temperature when the switch S is closed.
\qquad
\qquad
\qquad
\square
(b) (i) Differentiate between the term heat capacity and specific heat capacity of a substance
(2mks)
\qquad
\qquad
\qquad
(ii) An electric kettle rated 2.5 kW is used to raise the temperature of 3.0 kg of water through $50^{\circ} \mathrm{C}$. Calculate the time required to effect this (Specific heat capacity of water is $4200 \mathrm{j} / \mathrm{kgK}$)
(3 Marks)
\qquad
\qquad
14.(a) A glass capillary contains enclosed air by a thread of mercury 15 cm long when the tube is horizontal, the length of the enclosed air column 24 cm as shown.

iii) What is the length of the enclosed air column when the tube is vertical with the open end uppermost if the atmosphere pressure is 750 mmHg ? (2mks)
iv) Explain why the mercury does not run out when the tube is vertical with the closed end uppermost. (1mk)
b) Explain why an air bubble increase in volume as it rises from the bottom of a lake to the surface. (1mk)
\qquad
c) When an inflated balloon is placed in a refrigerator it is noted that its volume reduces, use the kinetic theory of gases to explain this observation.
(2mks)
\qquad
\qquad
d) A certain mass of hydrogen gas occupies a volume of $1.6 \mathrm{~m}^{3}$ at a pressure of $1.5 \times 10^{5} \mathrm{~Pa}$ and a temperature of $22^{\circ} \mathrm{c}$. Determine the volume when the temperature is $0^{\circ} \mathrm{c}$ at a pressure of $0.8 \times 10^{5} \mathrm{~Pa}$. (3mks)
\qquad
\qquad
e) i)State the pressure law
ii)On the axis provided, sketch a graph of pressure against temperature on the celcius scale. On the same axis sketch another graph for a gas of a larger volume.
(2mks)

Temperature (${ }^{\circ} \mathrm{c}$)

15. a) A machine is a device that enables work to be done more easily and conveniently.

State two ways in which a machine ensures this.
(2 marks)
\qquad
b) The figure below shows a simple machine being used to raise a load W by applying an effort E .

i) Name the machine.
ii) Show that the velocity ratio (V.R) of the machine is given by R / r.
(2marks)
iii) Given that $\mathrm{r}=11 \mathrm{~cm}$ and $\mathrm{R}=99 \mathrm{~cm}$, determine the effort E required to raise a load of 2800 N if the efficiency (n of the machine is 95%. (4 marks)
c) Explain why as the load increases the value of mechanical advantage of a machine approaches the value of the velocity of the machine.
16. (a) The figure below shews a stone of mass 450 g rotated in a vertical circle at 3 revolutions per second. If the string has a length of 1.5 m , determine:

B
(i) The linear velocity
(3mks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The tension of the string at position \mathbf{A}
\qquad
\qquad
\qquad
\qquad
b) On the same diagram indicate the path that the stone will follow if the string snaps at point B (1 Mk)
(c) A stone is whirled with uniform speed in horizontal circle having radius of 10 cm . It takes the stone 10 seconds to describe an arc of length 4 cm . Determine:
(i) The angular velocity ω
(ii) The period \mathbf{T}
\qquad
\qquad
17. The diagram below shows a pendulum bob swinging freely to and fro.

(a) (i) State the position where the pendulum bob has maximum kinetic energy.
(1mk)
(ii) Determine the velocity of the bob at the position identified in (a)i above if the maximum vertical displacement of the bob is 10 cm .
(3mks)
(b) A bullet of mass 20 g moving with a velocity of $1000 \mathrm{~m} / \mathrm{s}$ hits a stationery wooden block of mass 12 kg . The bullet imbeds and the two move in one direction. Calculate its final velocity.
(3mks)
\qquad
\qquad
(c) A block of mass 200 g rests on a rough horizontal table. A force of 0.6 N pulls the block so that it moves with a constant acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$. Calculate
(i) the time it takes to travel a distance of 200 m .
\qquad
\qquad
\qquad
(ii) the friction force between the block and the table.

PAPER 2

SECTION A (25 MARKS)

1. A ray immerges from a mirror S at an angle of 30° to the mirror as shown in the figure below. On the same diagram complete the ray path to show its incident path to mirror Q and state the angle of incidence.

R
2. The figure below shows the path of light passing through a rectangular block of perpex, placed in air.

Calculate the refractive index of the Perspex.
3. Two similar razor blades are placed one on a wooden block and the other on a soft iron block as shown in the figure below

It was observed that the razor blade on the wooden block was attracted to the magnet while the other on the soft iron block was not. Explain.
\qquad
\qquad
4. A man driving a car in rain discovers that the moment he alights from it, while touching its body he gets an electrical shock. Why was he not getting the shock while inside even if he touches metallic parts?
5. State and explain why TV tube has a wider screen than cathode Rays oscilloscope (C.R.O) tube (2mks)
\qquad
\qquad
\qquad
\qquad
6 The source of sound and two listeners are positioned close to a tall building as shown in the figure below.

143 for marking schemes inbox 0724351706

i) State the property of sound by which Listener A is able to hear the sound produced.
ii) Listener \mathbf{B} is moving directly towards Listener \mathbf{A} and has a problem hearing the sound produced. Explain.
7. A charged metal sphere is connected to an uncharged electroscope as shown in the figure below. State and explain the observations made (2mks)

8. The ammeter in the circuit in figure 3 has negligible internal resistance. The cell has an internal resistance of 0.5Ω and an electromotive force of 3.0 V .

Figure 3
Determine the value of current the ammeter registers when switch S is closed.
9. . A thick sheet of plastic, $\mathrm{n}=1.5$, is used as the side of an aquarium tank. Light reflected from a fish in the water has an angle of incidence of 35°. At what angle does the light enter the air. (3 mks)
10. State any one condition under which a pinhole camera may form an image on its screen which has the same size as the object.
11. The sketch shown below is a displacement-time graph of a wave traveling at $320 \mathrm{~ms}^{-1}$

Find the wavelength of the wave.
12. The figure below shows a laclanche cell.

Name the chemical substances in the parts labeled.
A.
B. \qquad

Section B 55 Marks

13.. (a) With the aid of a well labeled diagram, explain how lunar eclipse occurs.
(b) Explain why large convex mirrors are placed at certain points in supermarket (2mks)
\qquad
\qquad
\qquad
(c) An object 2.5 m tall is at a point 8 m from a pinhole camera. If the distance of the screen is 8.16 m from the object, calculate the size of the image
(d) (i) Draw a diagram to show how prisms are used in a periscope
(ii) Calculate the critical angle of a ray of light passing from glass to water, if their refractive indices are $2 / 3$ and $4 / 3$ respectively.
14. a) Define capacitance and state its SI units
\qquad
\qquad
\qquad
\qquad
b) Figure 12 shows three capacitors of capacitance $3 \mu \mp, 2 \mu \mp, 6 \mu \mp$ and 12 V supply connected in a circuit.

Fig. 9

Calculate
i) The total capacitance of the circuit.
ii) The charge stored in the circuit.
iii) The potential difference across the $2 \mu \mp$ capacitor.
c i) State Ohm's law.

Study the circuit diagram shown below.

(ii) Determine the reading of the voltmeter V.
(iii) Determine the reading of the ammeter A .
15. Some plane water waves were produced in a ripple tank. They pass from a region of deep water into a region of shallow water. The figure shows what the waves look like from above.

(a) State what happens at the boundary to.
(i) The frequency of the waves.
(ii) The speed of the waves.
(iii) The wavelength of the waves.
(b) The waves have a speed of $0.12 \mathrm{~m} / \mathrm{s}$ in the deep water. Wave crests are 0.08 apart to the deep water.

Calculate the
frequency of the source producing the waves.
(c) Arrange the following electromagnetic waves in order of their increasing wavelengths.X-rays, Gramma rays, Ultraviolet,

Visible light, Microwaves, Infra red.
(d) State two differences between a stationary wave and a progressive wave.
(e) The figure below represents crests of straight wave produced in a ripple tank.

Determine the wavelength of the waves.
16. a) The figure below shows white light incident on a rain drop.

(i) State what happens at A and B.
(ii) State the colour of rays C and D.
(2 marks)
\qquad
\qquad
(b) The figure below shows an image formed by concave mirror. Complete by drawing rays and locate the position of the object.

17. The current in a wire varied with voltage as shown in the following table.

Voltages(V)	1.05	1.40	1.80	2.20	2.60
Current (mA)	150	200	250	300	350

(a) Plot a graph of V against current.
(5mks)
(b) From your graph, determine the resistance of the wire.

PAPER 3

1. You are provided with the following :

- One stand
- One boss
- One clamp
- Two pieces of thread
- One stopwatch
- One metre rule or half metre rule
- Two springs.
- Six 100 g masses
- A piece of cellotape.
a)

a) i) Hang the springs from rod of a clamp as shown in the figure above.
ii) Tie together the upper end and the lower ends to springs with pieces of thread as shown in the figure.
iii) Hang a 100 g mass from the lower ends of he springs so that the mass is supported by both springs.
iv) Clamp the rule vertically with zero centimetre mark uppermost.
v) Use cellotape to fix the optical pin on the top of the 100 g mass so that it acts as a pointer.
vi) Adjust the rule so that the pointer is at 40.0 cm mark from the top of the rule.
b) i) Add a 100 g mass to the first mass. Record the new position of the pointer and the extension, e, in the table below.
ii) Add another 100 g mass and record the new position of the pointer and the extension in the table.
iii) Repeat b (ii) until the total mass supported by the spring is 600 g .
c) i) Remove the rule. Displace the 600 g mass slightly downwards and release it to oscillate vertically.
ii) Time 20 oscillations. Record in the table the time, t_{1} for 20 oscillations. Repeat this to obtain the average time, t, and the period of oscillation T.
iii) Repeat (c) (i) and (ii) for $500 \mathrm{~g}, 400 \mathrm{~g} 300 \mathrm{~g}$ and 200 g masses.
iv) Find T^{2} and complete the table.

Mass (g)	100	200	300	400	500	600
Position of point (cm)	40.0					
Extension, e, cm	0.0					
Time of t, (s)						
20 oscillations t2(S)						
Average time, t(s)						
Periodic time, T(s)						
$\mathbf{T}^{2}\left(\mathbf{S}^{2}\right)$						

d) i) On the grid provided plot a graph of T^{2} (vertical axis) against the extension, e.
d) ii Determine the gradient of the graph.
iii) The equation of the graph is given by

$$
T^{2}=\frac{4 \pi^{2}}{b} e+c
$$

Where b and c are constants.
Determine the value of b.

What does the value of b represent?

2. PART A

You are provided with the following apparatus.

- Two dry cells.
- Nichrome wire mounted on a mm scale.
- An ammeter.
- Cell holder.
- Voltmeter
- 8 connecting wires.
- Metre rule
- Switch.

Proceed

a) Connect the circuit as shown in the diagram below.

b) Connect the end A and C where AC is 100 cm across the terminals as shown. Close the switch and measure both current I and p.d. across the wire AC.
Current $=I$
P.d V=
c) Measure the emf of the cells $\mathrm{E}=$
d) Reduce the length AC. In each case record the current I and the corresponding V. Complete the table below.

Length L(cm)	100	70	60	50	40	20
Current I (A)						
P.d. (V)						
E-V (v)						

e) Plot a graph of $(E-V)$ against $I(A)$

f) Determine the slope of the graph.
(2 marks)
g) Given that $\mathrm{E}=\mathrm{V}+1 \mathrm{r}$ determine r from your graph.

Que 2 PART B

You are provided with the following apparatus.

- Rectangular glass block
- 3 optical pins
- A soft board.
- A plane paper
- 4 paper pins.

Place the rectangular glass block in the middle of the plane paper and trace its outline. Using a pencil remove the block.

Construct a perpendicular line LMO bisecting the shorter sides of M and O .
Mark points P and Q such that $P M=M Q=5 \mathrm{~cm}$.
a) Measure

OM.

- Place the plane paper on the soft board and carefully replace the glass block so that it fit the outline.
- Press the object pin on O such that it is upright and touching glass block and the second pin on P also upright and touching the block.
- Press the third pin P_{1} a short distance form the block such that P_{1}, P and I lie on a straight line when viewed through the block with one eye. I is the image of the object pin O .
- Repeat the experiment with now on Q. Press the third pin P_{2} a short distance from the block such that when viewed $\mathrm{P}_{2}, \mathrm{Q}$ and I lie in a straight line.
b) Remove the pins and glass block; draw the lines $\mathrm{P}_{1} \mathrm{PI}$ (PI dotted) and $\mathrm{P}_{2} \mathrm{QI}(\mathrm{QI})$ doted meeting OM at I . $\mathrm{IM}=$ \qquad .cm
(1 mark)
c) Using the above information calculate the refractive index of the glass block by real and apparent depth method.
(2 marks)
d) NB - Hand in your work on the plane paper.

KCSE REPLICA 9

PAPER 1

SECTION A (25 MARKS)

1. A spherical ball bearing of mass 0.0024 kg is held between the anvil and spindle of a micrometer screw gauge. The reading on the gauge when the jaws are closed without anything in between is 0.11 mm . Use this information and the position of the scale in the figure 1 below to answer the questions (a) and (b) below:

fig 1

a) What is the diameter of the ball bearing?
b) Find the density of the ball bearing correct to 3 significant figures
\qquad
\qquad
\qquad
\qquad
2. The diagram below shows a wire loop with two threads tied across it. The loop is dipped into a soap solution such that the soap film covers it as shown in fig 2

Fig 2

Region B is punctured such that the soap film in that section is broken. On the space alongside the diagram sketch the resulting shape of the wire loop. Give a reason for the shape.
(2 mks)
\qquad
\qquad
\qquad
3. The figure $\mathbf{3}$ below shows an arrangement to demonstrate diffusion through solids:-

The hydrogen gas is supplied for sometimes then stopped and the beaker removed. State and explain what is likely to be observed when the hydrogen gas supply is stopped (3 mks)
\qquad
\qquad
\qquad
4. Figure 4 shows two identical thermometers. Thermometer \mathbf{A} has a blackened bulb while thermometer B has a silvery bulb. A candle is placed equidistant between the two thermometers

State with a reason the observations made after some time(2crakd)e

Ste...
5. A car being driven on a horizontal straight road accelerates uniformly from O to $20 \mathrm{~m} / \mathrm{s}$. In the first 10 s . It continues at that speed for the next 40 s and then decelerates to a stop in 5 s . Sketch the velocity time graph for its motion. (2 marks)
6. A uniform metre rule is balanced at its centre. It is balanced by the $30 \mathrm{~N}, 5 \mathrm{~N}$ and the magnetic force between \mathbf{P} and $\mathbf{Q} . \mathbf{P}$ is fixed and \mathbf{Q} has a weight of 5 N

a) Ignoring the weight of the metre rule, calculate the value of the magnetic force between Q and P (2 mks)
b) Given that the lower end of Q is North pole, state polarity of the end of P facing Q .
7. (a) Give a reason why water is not suitable as a barometric liquid. (1 mk)
(b)Explain why a lift pump is unable to raise water from a borehole where the level of water is 20 m below the ground level.
8. The diagram below shows a mass of 12 g hanged on a set of 6 identical springs.

When a mass of 12 g was hanged on spring A alone, its extension was 5 cm . Find the extension of the combination shown if each spring and each rod has negligible mass (2 mks)

fig 6
9. Sea water of density $\mathbf{1 . 0 4 g} / \mathbf{c m}^{\mathbf{3}}$ is being pumped into a tank through a pipe of uniform cross-sectional area of $3.142 \mathrm{~cm}^{2}$. If the speed of water in the pipe is $5 \mathrm{~m} / \mathrm{s}$, determine the mass flux in S.I unit.
(2 mks)
Below shows a displacement - time graph.

Displacement (m)

157 for marking schemes inbox 0724351706

O

Time (s)
Describe the motion of the body between points:
OA (1 mk)

AB (1 mk)
10. A quantity of air occupied $500 \mathrm{~cm}^{3}$ at $15^{\circ} \mathrm{C}$ when the pressure was 76 cmHg . At what temperature would it occupy $460 \mathrm{~cm}^{3}$ if the pressure was 85 cmHg ?

SECTION B (55 MARKS)

12.a) State the pressure law for an ideal gas.(1 mark)
c) The set up shows an arrangement to determine the relationship between temperature and pressure of a gas at constant volume.

Fig 7

i) Describe how the measurements are obtained in the experiment (3 marks)
ii) Explain how the results from the experiment can be used to determine the relationship between temperature and pressure (2 marks)
c) A bicycle tyre is pumped to a pressure of $2.2 \times 10^{5} \mathrm{pa}$ at $23^{\circ} \mathrm{c}$. After a race the pressure is found to be $2.6 \times 10^{5} \mathrm{pa}$. Assuming the volume of the tyre did not change, what is the temperature of the air in the tyre. (3 marks)
d) Air is trapped inside a glass tube by a thread of mercury 240 mm long. When the tube is held horizontally the length of the air column is 240 mm .

Assuming that the atmospheric pressure is 750 mmHg and the temperature is constant, calculate the length of the air column when the tube is vertical with open and down.
(3 marks)
13. (a) An object is released to fall vertically from height of 100 m . At the same time another object projected vertically upward with velocity of $40 \mathrm{~m} / \mathrm{s}$.
(i) Calculate the time taken before the objects meet
(3mks)
(ii) At what height do the objects meet?
(2mks)
(b) A string of negligible mass has a bucket tied at the end. The string is 60 cm long and the bucket has a mass of 45 g . The bucket is swung horizontally making 6 revolutions per second. Calculate
(i) The angular velocity
(2mk)
\qquad
(ii) The angular acceleration
(2mks)
(iii) The tension on the string
(iii) The linear velocity (1mk)
14. a) State Archimedes' principle.
(b) The figure 9 below shows a rectangular buoy of mass 4000 kg tethered to the sea-bed by a wire. The dimensions are $4 \mathrm{~m} \times 1.5 \mathrm{~m} \times 2.2 \mathrm{~m}$.

Calculate the :-
(i) Weight of sea water displaced by the buoy (density of sea water $=1100 \mathrm{~kg} / \mathrm{m}^{3}$) (3 mks)
(ii) Upward force exerted on the buoy by the water.
(iii) Tension in the wire (2mks)
(c) A test tube of mass 10 g and uniform cross-sectional area $4 \mathrm{~cm}^{2}$ is partly filled with lead shots and floats vertically in water with 5 cm of its length submerged.

Find the:-
(i) Mass of the lead shots. (2mks)
(ii) Length of the test tube that would be submerged in a liquid of density $0.75 \mathrm{~g} / \mathrm{cm}^{3}$. (2mks)
15. (a) State two differences between boiling and evaporation.
(b) 1200 g of a liquid at $10^{\circ} \mathrm{C}$ is poured into a well-logged calorimeter. An electric heater rated 1 KW is used to heat the liquid. The graph in fig 4 below shows the variation of temperature of the liquid with time.

Fig. 4
Use the graph to answer the following questions:
(i) What is the boiling point of the liquid?
(ii) How much heat is given out by the heater to take the liquid to the boiling point?
(iii) Determine the specific heat capacity of the liquid stating any assumptions made.
(iv) If 50 g of the liquid vapour was collected by the end of the $8^{\text {th }}$ minute, determine the specific latent heat of vaporization of the liquid. (2 mks)
16. (a) (i)State Newton's second law of motion.
(ii) A striker kicks a ball of mass 250 g initially at rest with a force of 75 N . if the foot was in contact with the ball for 0.10 sec . Calculate the take off velocity of the ball.
(2 mks)
(b)A bullet of mass 20 g moving at $400 \mathrm{~m} / \mathrm{s}$ strikes a block of wood of mass 3.5 kg initially at rest. The bullet sticks into the block and the two move off together on a horizontal surface, where a frictional retarting force of 4 N is acting between the block and surface.
(i) Determine the initial common velocity of bullet and wooden block. (2 mks)
(ii) What distance does the block move before coming to rest?
(c) Two immiscible liquids are poured in an open container to the levels shown in the diagram below.

Figure 11

If the densities of the liquids \mathbf{A} and \mathbf{B} are $1 \mathrm{~g} / \mathrm{cm}^{3}$ and $0.8 \mathrm{~g} / \mathrm{cm}^{3}$ respectively and the atmospheric pressure 760 mmHg , find the total pressure acting upon solid \mathbf{C} at the bottom of the container. (Take density of mercury to be $13.6 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{g}=10 \mathrm{~N} / \mathrm{Kg}$) (3 mks)

PAPER 3(PRACTICAL)

Question 1 (20 marks)

You are provided with the following
-Two dry cell
-One bulb
-Voltmeter ($0-3 \mathrm{~V}$)
162 for marking schemes inbox 0724351706
-Ammeter ($0-1 \mathrm{~A}$)
-Amounted nicrome wire mounted on a millimeter scale
-Switch
-Seven connecting wire at least two with crocodile clips
-Micrometer screw gauge
Proceed as follows:
a) i). Set up the circuit as shown in the figure 1 below.

ii) With the crocodile clip at p , take the voltmeter reading and ammeter reading. Record v and 1 repeat the readings for $\mathrm{L}=80,60,40,20$ and 0 cm respectively and complete the table below.

Length, L(cm)	100	80	60	40	20	0
Voltage, V(V)						
Current, I (A)						

iii). What changes do you observe on the bulb as L decreases from p ?
iv).Plot a graph of ammeter reading ($\mathrm{y}=$ axis) against voltmeter readings.
v). Determine the slope of the graph at $\mathrm{V}=1$ volt.
vi). What physical quantity is represented by the slope of the graph at any given point?
b. (i) Given the apparatus in a (i) above, draw a diagram of the circuit you would use to determine the current through the resistant wire and the potential difference across.
(1mrk)
ii). Set up the circuit you have drawn. Record the ammeter reading I and the wire reading V when $\mathrm{L}=100 \mathrm{~cm}$ (2mks)
$\mathrm{V}=$. \qquad $\mathrm{I}=$ \qquad
iii). Using a micrometer screw gauge, measure the diameter of the wire.
$\mathrm{d}=$ \qquad .m
iv). Calculate the quantity:
$\mathrm{p}=0.785 \frac{(\mathbf{V})}{\mathbf{I}} \frac{\mathbf{d}^{2}}{\boldsymbol{L}}$ and give its units, where L is one meter.

Question 2

You are provided with the following:-

- Vernier callipers
- Micrometer screw gauge
- Masses; $10 \mathrm{~g}, 20 \mathrm{~g}, 50 \mathrm{~g}$ and 100 g
- A helical spring
- Metre rule or half metre rule

Proceed as follows
(a) Determine the number of complete turns of the helical spring.

$$
\mathrm{N}=
$$

\qquad
(b) Measure the external diameter of the spring using the vernier callipers $\mathrm{D}=$ \qquad m
(c) Use the micrometer screw gauge to determine the diameter of the wire of the spring. $d=$ \qquad m
(d) Determine the value of m
$\mathrm{N}=\frac{0.4 D}{d m}$
(e) Suspend the helical spring vertically alongside the clamped half metre rule as shown in figure 1 below. Determine the length L_{0}, of the spring before loading it.

Figure 2
(f) Load the spring with a mass of 20 g and determine the new reading on the metre rule. (L) Record this in the table below.
(g) Calculate the extension $\mathrm{e}=\mathrm{L}-\mathrm{L}{ }_{0}$ due to the mass of 20 g and record the value in the table given below. Repeat step f for other masses and complete the table.

Mass (g)	0	10	20	30	40	50	60	70	80	90	100
Weight (N)											
Reading (L) (cm)											
Extension e (cm)											
$\frac{1}{e}\left(\mathrm{~cm}^{-1}\right)$											

(6 Marks)
(h) Plot a graph of weight (N) against $\frac{1}{e}\left(\mathrm{~cm}^{-1}\right)$
(4 Marks)
(i) Determine the slope (s) of the graph at a mass of 45 g
(2 Marks)
\qquad
\qquad
(j) Given that $\mathrm{m}=\frac{-255 T}{(S+60)^{2}}$

Determine the value of T where (S) is the slope at 45 g
(3 Marks)

KCSE REPLICA 10

PAPER 1

SECTION A 25 MARKS: Attempt all the questions in this section

1. The figure below shows a piece of metal stuck in a hollow glass pipe. .Explain how temperature change may be used to separate them
2. Form four students were playing football game during which the ball got deflated. Explain what happened to its density
3. Micrometer screw gauge A has a zero error of $-\mathbf{x ~ m m}$. Micrometer screw gauge B has a zero error of $\mathbf{x ~ m m}$ When used to measure the diameter of a tube the difference between their readings is 0.04 mm . If the actual diameter of the tube is 5.56 mm determinex hence state the reading of micrometer screw gauge A (3 marks)
4. A car of mass 1000 kg travelling at a constant velocity of $40 \mathrm{~m} / \mathrm{s}$ collides with a stationary metal block of mass 800 kg . The impact takes 3 s before the two move together. Determine the impulsive force (3marks)
5. The figure below shows a drop of water about to fall from a pipette and after falling. Explain why the shapes of the drop are different (2 marks)

6. Figure shows a liquid manometer. The gas pressure is 755 mmHg and that of the surround is 760 mmHg . The height h is 80 mm . Determine the density of the liquid. (Take density of mercury $=$ $13600 \mathrm{kgm}^{-3}$ and $\mathrm{g}=10 \mathrm{Nkg}^{-1}$) (3 marks)

7. A student balances a V - shaped uniform wire on a tight string as shown in A and B . With reason state the one which is easier to do (2marks)

8. The figure below shows a Bunsen burner. Explain how air is drawn into the burner when the gas tap is opened. (2marks)

9. The figure shows a uniform metal bar of length 10 m and weight $\mathrm{W}=200 \mathrm{~N}$ held at equilibrium by a light chain fixed at the cog and tethered on the floor using a light chain. Determine the tension of the chain (3marks)

10. A student set up the apparatus as shown below. The boiling tube was heated in the middle as shown

a. State the role of the lead shot in the experiment (1mark)
b. With reason, state the wax that will melt first (2marks)

SECTION B 55 MARKS: Attempt all the questions in this section

11. Marble A is projected horizontally from the top of a cliff at a velocity of $50 \mathrm{~m} / \mathrm{s}$. The height of the cliff from its foot is 31.25 m . At the same time another marble B is projected horizontally from the same point. The figure below shows the trajectories taken by the marbles

Determine
a. The distance of marble A from the foot of the cliff as it hits the ground
(3marks)
b. Vertical velocity of marble A as it hits the ground (2marks)
c. Horizontal velocity of marble B as it hits the ground (2marks)
d. The shortest distance between the marbles upon hitting the ground (2marks)
12. The figure below shows two identical light springsand other apparatus used in an experiment

Electronic balance
After the data was collected the following graph was obtained

a. State two measurements taken in the experiment (2mark)
b. Explain how the measurements can be used to come up with the graph (2marks)
c. Explain the graph in sections
i. AB
ii. $\quad \mathrm{CD}$
(2marks)
d. Determine the spring constant of each spring
e. Determine the work done in section CD
(2marks)
f. On the same axes sketch the graph expected when the experiment is repeated using one of the springs only
(1mark)
13. The figure below shows an inclined plane on which a trolley of mass 30 kg is pulled up a slope by a force of 100 N , parallel to the slope. The trolley moves so that its centre of mass travels from points A to B.

(i) Determined the work done on the trolley against the gravitational force in moving from \mathbf{A} to \mathbf{B}. (2 marks)
(ii) Determine the work done by the force in moving the trolley from \mathbf{A} to \mathbf{B}. (3 marks)
(iii) Determine the percentage of the work input that goes to waste (3 marks)
(iii) Determine the frictional force. (1 mark)
(v) Determine the mechanical advantage of the system.
(1 mark)
(vi) Find the velocity ratio (1 mark)
14. a. The figure below shows a set-up that can be used to determine the specific heat capacity of a metal block.

I) Other than temperature and current, state two measurements that should be taken in the experiment to determine the specific heat capacity of the block.(2marks)
II) Describe how the method can be used to determine the specific heat capacity of the metal block. (3marks)
III) State the purpose of oil in the set-up. (1mark)
(ii) A well lagged copper can together with a copper stirrer of total heat capacity $60 \mathrm{JK}{ }^{-1}$ contains 200 g of water at $20^{\circ} \mathrm{C}$. Dry steam at $100^{\circ} \mathrm{C}$ is passed in while the water is stirred until the content reach a temperature of $50^{\circ} \mathrm{C}$. Determine the mass of condensed steam. (Specific latent heat of vaporization of water is $2.26 \mathrm{X} 10^{6}$ J / kg and specific heat capacity of water is $4200 \mathrm{~J} / \mathrm{kgK}$)(4marks)
15. a) A uniform metal strip is 3.0 cm wide 0.6 cm thick and 100 cm long. The density of the metal is $2.7 \mathrm{~g} / \mathrm{cm}^{3}$.
I. Determine the weight of the metal strip. (2marks)

The strip is used to support two masses in equilibrium by applying force F as shown below.

II. Determine the value of F
(3 marks)
III. Determine reaction R due to the pivot (2 marks)
b) The Figure belowshows a set up that may be used to verify a gas law.

I. State the law being verified (1mark)
II. State two functions of the concentrated Sulphuric acid in the experiment (2marks)?
III. State one assumption in the experiment
(1mark)

PAPER 2

SECTION A (25 MARKS)
Answer ALL the questions in this section in the spaces provided

1. (a)Distinguish between real and virtual Image
(1mark)
b)A pinhole camera forms an image of size 10 cm . The object is 5 m tall and 20 m away from the pinhole. Find the length of the pinhole camera.
2. Why is it safer to carry explosive fuels in metal cans instead of plastic can? (1mark)
3.The figure 1 below shows a cross section of a dry cell.

Figure 1
(i) Name the part labeled A
(ii) State the use of manganese (iv) oxide in the cell
4.a) The figure $\mathbf{2}$ below shows a soft iron bar that's placed in a coil near a free suspended magnet.

figure 2
State and explain the observation made when the switch is closed.
b.) Give a reason why attraction in magnetism is not regarded as a reliable method of testing for polarity. (1mark)
5.Explain the termwavelength in terms longitudinal wave (1mark)
6.(a) State the effect of pressure on the speed of sound in air. (1mark)

173 for marking schemes inbox 0724351706

(b) A boy stands 190 m from a high wall and claps his hands. If he hears an echo1.3 Seconds later, calculate the speed of sound in air.
(2marks)
7.Figure 3below shows an object, O placed 10 cm in front of a concave mirror whose radius, C is 40 cm .

On the same figure, draw a ray diagram to show the position of the image formed.
8. State any factor that determine the heating effect by an electric current.
(1mark)
9.Figure 4 shows the table of electromagnetic. Spectrum in the increasing order of wavelengths.

\mathbf{P}	x-rays		Q	Infra-red		

a).Identify the radiation marked (1mark)
Q. -
b) State the application of radiation marked \mathbf{P} (1mark)
10.Light travels from glass to air as shown in figure 5. The refractive index of glass 1.5

figure 5.

$$
\text { (a) Determine angle } \mathbf{x} \quad \text { (2marks) }
$$

11. Figure 6 shows air molecules in front of a hollow, wooden box B set vibrating by a tuning fork.

i)State the reason of mounting the tuning fork on the box which is open at one end. (1mark)
ii)What is the name given to this kind of wave? (1 mark)
12.The figure 7 below shows an isolated negative charge placed closer to a negatively charged plate. Draw the electric field patterns.
(1mark)

figure 7

13. Kenya launched the use of optical fibres in communication recently. State why optical fibres are preferred to ordinary cables
(1mark)

SECTION B(55MARKS)

14.(a)State two ways in which the speed of rotation of a motor can be increased (2marks)
\qquad
\qquad
b)The figure 8 below shows a simple electric bell circuit

Switch

figure 8

i) Name the parts labeled.
I) $\quad \mathrm{X}$ \qquad
II) Y
ii) When the switch is closed, the hammer hits the gong repeatedly. Explain why:
I) The hammer hits the gong.
(2marks)
II) The hammer hits the gong repeatedly
(2marks)
iii) If the armature is made of steel metal, it is observed that the bell will take longer to ring. Explain this observation.
(1 mark)
iv) Nametwo adjustment should be done to the system to make it operate effectively with a lower voltage battery?
(2mark)
15. (a) In an experiment to determine the internal resistance of a cell, the following circuit was used.

It was noted that when S is open, the voltmeter reads 1.5 V and when S is closed the voltmeter reads 1.3 V and ammeter reads 0.2 A .

176 for marking schemes inbox 0724351706

(i) Define the term e.m.f of the cell.
(1mark)
(ii) Determine the lost voltage.
(1mark)
\qquad
\qquad
(iii)Determine the value of R .
(2marks)
\qquad
(iv) Determine the internal resistance of the cell.
(3marks)
(b) Study the circuit below and answer the questions that follow.

(i) Determine the effective the circuit.
\qquad
\qquad
(ii) Determine the p.d between X and Y .
(2marks)
16.(a) (i)Define capacitance of capacitor
(1mark)
(ii)A positively charged rod with a pointed end is brought near a candle flame as shownfig. 9.

Positively charged needle

fig. 9
(1mark)
b). One of the factors which affect the capacitance of a parallel plate capacitor is the area of overlap of the plates. Name two other factors.
c). Calculate the effective capacitance of the capacitors shown across points X and Y .
(3marks)

d). A capacitor was full charged to a potential of 40 v . The capacitor is connected as shown in the figure below to discharge at load resistor R. Sketch a graph to show how the capacitor discharges with time

(2 mark)
17.(a)Water waves from a given source move from a deeper a shallow to end. What effect would this have on the;
(i) Frequency (1mark)
(ii)Wavelength (1mark)
(iii) Velocity of the wave(1mark)
(b).The figure 10 shows wave fronts approaching a wide opening

figure 10
i)Complete the diagram to show the appearance of the wave fronts after crossing the opening (2 mark)
(ii)State what would be observed on the pattern if the gap was made smaller (1mark)
c.) Figure 11 below shows light rays from two coherent sources S_{1} and S_{2} falling on screen. Dark and bright fringes are observed between A and B

figure 11
i) State the function of S_{1} and S_{2}
ii) State how
I. Bright fringes are formed
II. Dark fringes are formed
c). Figure12below shows plane water waves incident on a plane reflector placed at an angle to the path of the waves.

Complete the diagram to show the reflected waves
18. (a) Define the term principal focus for in converging lens(1mark)
b) Sketch on a diagram to illustrate how a convex lens is used as a magnifying glass.
(c) In an experiment to determine the focal length of a converging lens using lens formula, several values of image distance corresponding to value of object distance u were determined and a graph of magnification m against image distance v, plotted as shown in Figure 13

The equation of the graph can be represented by the equation $\mathrm{m}=\frac{v}{f}-1$
(i) State the significance of the gradient of the graph
(ii) From the graph, determine the focal length of the lens.
\qquad
\qquad
\qquad
(iii) Determine the value of object distance for which the image is not magnified. (1mark)
\qquad
(iv) An object of height 10.5 cm stands before a diverging lens of focal length 20 cm and a distance of 10 cm from the lens. Determine the image distance. (3 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PAPER 3

QUESTION 1
PART A
You are provided with the following:
-A watch glass
-A piece of plasticine
-A marble
-A Stopwatch
-An electronic balance (to be shared)

- Vernier calipers (to be shared)
- Geometrical set

Proceed as follows:
(a) Measure the mass, \mathbf{m} of the marble.
m $=$ \qquad ($1 / 2$ mark)
b) Place the watch glass on the table. Cut the plasticine into two pieces and use them to hold the watch glass firmly on the table as shown in Figure 1.
c). Release the marble from one end of the watch glass and time 5 complete oscillation with the stopwatch. Repeat this one more time.

Figure 1
d) Record your values in the Table 1

Attempt	Time for $\mathbf{5}$ oscillations (seconds)	Periodic time, T(s)
$1^{\text {st }}$		
$2^{\text {nd }}$		

Table 1
e) Find the average periodic time \mathbf{T}
($1^{1 / 2}$ marks)
f) (i)Measure the diameter of the marble with the Vernier calipers, hence find its radius

Diameter, $\mathbf{d}=$
(1mark)
Radius, $\mathbf{r}=$ \qquad .m
($1 / 2$ mark)
(ii)Determine the volume of the marble given that $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$ where $\pi=3.142 \quad$ (1 mark)
(iii)Calculate the radius of the curvature of the watch glass R from the formula $\mathrm{R}-\mathrm{r}=\frac{5 g T^{2}}{7(2 \pi)^{2}}$

Where $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\pi=3.142$
(1mark)

PART B

You are provided with the following:

- A glass prism
- A plain sheet of paper
- A soft board
- 4 optical pins
- 2 Thumb tacks

Proceed as follows:
g) (i)Firmly fix the plain sheet of paper on the soft board using the thumb tacks and place the prism at the centre of the paper. Trace the outline of the prism using a pencil.
(ii)Remove the prism from the outline and label the vertices of the outline L, M and N as shown in Figure 2

Figure 2

Measure Angle LMN and length, \mathbf{l} using a ruler
Angle LMN =
(1mark)
Length, $l=$
(1mark)
iii) On the side ML mark a point and draw the normal at that point. Measure an angle T, 60° from the line LM and draw a line along this angle as shown in Figure 3.
iv).
oth
stra:

v). $]$
line
at point O . Determine angle D and record it in the Table 2
h). (i)Repeat the procedure and complete the Table 2
: at a distance of 3 cm from each ind P_{4} so that they appear to be on

Figure 3 ;o that the two lines cross each other ($2^{1 / 2 m a r k s)}$

Angle $T\left(^{\circ}\right)$	60°	50°	40°

Angle $D\left(^{\circ}\right)$			
Angle $I^{\circ}\left(90^{\circ}-T\right)$			

Table 2
(ii) Determine the average value D_{m} of D
(1mark)
iii) Determine the constant \boldsymbol{k} for the glass prism from the formula
(2marks)

$$
k=\frac{\sin \left(\frac{A+D_{m}}{2}\right)}{\sin \frac{A}{2}}
$$

iv) State the significance of \boldsymbol{k}

PART C

You are provided with the following:

- A lens holder
- Convex lens
- A candle
- A white screen
- A metre rule

Proceed as follows:

i) Set up the apparatus as shown in Figure 4

he candle flame.

Figure 4

$\mathrm{u}(\mathrm{cm})$	$\mathrm{v}(\mathrm{cm})$	$\mathrm{m}=\frac{v}{u}$
30		
50		

Table 3
(ii) Given that the focal length f of the lens satisfies the equation $\mathrm{f}=\frac{v}{m+1}$, determine the average value of the focal length, f.
(2 marks)

QUESTION 2

You are provided with the following:
183 for marking schemes inbox 0724351706

- An ammeter (0-1 A)
- A voltmeter ($\mathbf{0}-\mathbf{3} \mathbf{V}$ or $\mathbf{0}-\mathbf{5} \mathrm{V})$
- A variable resistor
- A $\mathbf{1 0 \Omega}$ carbon resistor
- A piece of resistance wire
- Two new dry cells
- A cell holder
- A switch
- Seven connecting wires

Proceed as follows:

a) Take the resistant wire and coil it around the biro pen to make a coil.
b) Set up the apparatus as shown Figure $\mathbf{5}$ below such that the $\mathbf{1 0 \Omega}$ carbon resistor and the coil are in parallel connection.

Figure 5
c) Close the switch and the adjust the variable resistor such that the ammeter read a current of $\mathrm{I}_{1}=\mathbf{0 . 0 8 A}$ and record the corresponding voltmeter reading $\mathbf{V}_{\mathbf{1}}$
i) $\mathbf{V}_{1}=\ldots \ldots \ldots \ldots \ldots \ldots$
ii) Calculate resistance $\mathbf{R}_{1}=\frac{\mathbf{V}_{1}}{\mathbf{I}_{1}}$
(1mark)
(1mark)
d) Repeat (c) above for current of $\mathrm{I}_{2}=\mathbf{0 . 1 6} \mathbf{A}$ and record the corresponding voltmeter reading $\mathbf{V}_{\mathbf{2}}$
i) $\mathbf{V}_{\mathbf{2}}=$. \qquad (1mark)
ii) Calculate resistance $\mathbf{R}_{2}=\frac{\mathbf{V}_{2}}{\mathbf{I}_{2}}$
(1mark)
e) Find the average value of resistance \mathbf{R}
(1mark)
f) Determine the resistance, \mathbf{C} of the coil
(2marks)
g) Now set up the apparatus as shown in Figure 6 below such that the voltmeter is connected across the cells, 10Ω carbon resistor and the coil are in parallel connection.

Figure 6
h) Close the switch and the adjust the variable resistor such that the ammeter reads a current of $\mathbf{0 . 0 4 A}$ and note the corresponding voltmeter reading. Record the value in the Table 4 below.
i) Repeat (h) above for other values of current and voltage and complete the Table 4 below

Current, I (A)	0.04	0.08	0.12	0.16	0.20	0.24
Voltage, V(V)						

j) On the grid provided plot a graph of Voltage, $\mathbf{V}(\mathbf{V})$ against Current, I (A) (5marks)
k) Determine the slope of the of the graph
(2marks)

1) Given that graph is related to equation $\mathbf{E}=\mathbf{V}+\mathbf{I r}$ where \mathbf{E} and \mathbf{r} are the emf and internal resistance of the cells respectively, use your graph to determine the value of:
$\mathbf{E}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
(1mark)
$\mathbf{r}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
(1mark)
