MATRICES

1) Given that $\mathbf{P}=\left(\begin{array}{cc}\mathrm{x} & -1 \\ 15 & -\mathrm{x}\end{array}\right)$ and that $\mathbf{P}^{2}=\mathbf{I}$, find x.

$$
\begin{gathered}
\mathbf{P}=\left(\begin{array}{cc}
\mathbf{x} & -\mathbf{1} \\
\mathbf{1 5} & -\mathrm{x}
\end{array}\right) \\
\mathbf{P}^{2}=\text { Identity } \\
\mathbf{P}^{2}=\left(\begin{array}{cc}
\mathbf{x} & -\mathbf{1} \\
\mathbf{1 5} & -\mathrm{x}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{x} & -\mathbf{1} \\
15 & -\mathrm{x}
\end{array}\right) \\
=\left(\begin{array}{cc}
\mathbf{x}^{2}-\mathbf{1 5} & -\mathrm{x}+\mathrm{x} \\
15 \mathrm{x}-15 \mathrm{x} & -15+\mathrm{x}^{2}
\end{array}\right) \\
=\left(\begin{array}{cc}
\mathbf{x}^{2}-\mathbf{1 5} & \mathbf{0} \\
\mathbf{0} & -15+\mathrm{x}^{2}
\end{array}\right)
\end{gathered}
$$

$$
\begin{gathered}
\text { Since } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
x^{2}-15=1 \\
x^{2}=16 \\
x=\sqrt{14} \\
x= \pm 4
\end{gathered}
$$

2) Determine the value of x if the matrix $\mathbf{A}=\left(\begin{array}{cc}2 x & -8 \\ -4 & \mathrm{x}\end{array}\right)$ has no inverse.

$$
\begin{array}{c|c}
A=\left(\begin{array}{cc}
2 x & -8 \\
-4 & x
\end{array}\right) & 2 x^{2}=32 \\
\text { Determinant }=0 & x^{2}=16 \\
2 x^{2}-32=0 & x=\sqrt{14} \\
& x= \pm 4
\end{array}
$$

3) Find the value of x of which the matrix $\mathbf{B}=\left(\begin{array}{cc}x+1 & 5 \\ 4 & x\end{array}\right)$ is singular.

$$
B=\left(\begin{array}{cc}
x+1 & 5 \\
4 & x
\end{array}\right)
$$

Determinant $=\mathbf{0}$

$$
\begin{gathered}
x(x+1)-20=0 \\
x^{2}+x-20=0
\end{gathered}
$$

Using quadratic formula;

$$
\begin{gathered}
x=\frac{-1 \pm \sqrt{1+80}}{2} \\
=\frac{-1 \pm 9}{2} \\
x=-5 \\
\text { or } \\
x=-4 .
\end{gathered}
$$

4) Given that $\mathbf{M}=\left(\begin{array}{ll}4 & 5 \\ 2 & 3\end{array}\right)$ and $\mathbf{N}=\left(\begin{array}{cc}-2 & 3 \\ 1 & -1\end{array}\right)$, find $\mathbf{M}^{-1} \mathbf{N}$

$$
\left.\begin{array}{c|c}
\mathbf{M}=\left(\begin{array}{ll}
4 & 5 \\
2 & 3
\end{array}\right) \text { and } \mathbf{N}=\left(\begin{array}{cc}
-2 & 3 \\
1 & -1
\end{array}\right) & \left(\begin{array}{cc}
1.5 & -2.5 \\
-1 & 2
\end{array}\right) \\
\mathbf{M}^{-1}=? & \quad M^{-1} \mathbf{N}=\left(\begin{array}{cc}
1.5 & -2.5 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
-2 & 3 \\
1 & -1
\end{array}\right) \\
\text { Det M; } & =\left(\begin{array}{cc}
(-3-2.5) & (4.5+2.5) \\
4 & (-3-2)
\end{array}\right) \\
=12-10 \\
=2
\end{array} \quad \begin{array}{cc}
-5.5 & 6.5 \\
4 & -5
\end{array}\right) .
$$

$$
M^{-1}=\frac{1}{2}\left(\begin{array}{cc}
3 & -5 \\
-2 & 4
\end{array}\right)
$$

5) Find the value of y given that the matrix $\mathbf{T}=\left(\begin{array}{cc}\boldsymbol{y}+\mathbf{7} & \mathbf{4} \\ -3 & y\end{array}\right)$ is singular.

$$
\begin{gathered}
T=\left(\begin{array}{cc}
y+7 & 4 \\
-3 & y
\end{array}\right) \\
\text { Determinant }=0 \\
y(y+7)+12=0 \\
y^{2}+7 y+12=0
\end{gathered}
$$

using quadratic formula;

$$
\begin{gathered}
y=\frac{-7 \pm \sqrt{29-48}}{2} \\
=\frac{-7 \pm 1}{2} \\
y=-4 \\
\text { or } \\
y=-3 .
\end{gathered}
$$

6) Given that A and B are matrices $\mathbf{A}=\left(\begin{array}{cc}0 & 2 \\ 0 & x-1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}x & 2 \\ 1 & -2\end{array}\right)$, find x if $A+B$ is singular.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
0 & 2 \\
0 & x-1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
x & 2 \\
1 & -2
\end{array}\right) \\
& A+B ; \\
&=\left(\begin{array}{cc}
0 & 2 \\
0 & x-1
\end{array}\right)+\left(\begin{array}{cc}
x & 2 \\
1 & -2
\end{array}\right) \\
&=\left(\begin{array}{cc}
x & 4 \\
1 & x-3
\end{array}\right)
\end{aligned}
$$

For singular matrix;

$$
\begin{gathered}
\text { Det }=0 \\
x(x-3)-4=0
\end{gathered}
$$

$$
x^{2}-3 x-4=0
$$

Using quadratic formula;

$$
\begin{gathered}
x=\frac{3 \pm \sqrt{9+16}}{2} \\
=\frac{3 \pm 5}{2} \\
x=4 \\
\text { or } \\
x=-1 .
\end{gathered}
$$

7) Given that $\mathbf{P}=\left(\begin{array}{ll}1 & \mathrm{k} \\ 3 & 3\end{array}\right)$ and $\mathbf{Q}=\left(\begin{array}{cc}-3 & 5 \\ 1 & -2\end{array}\right)$, find k if the determinant of $\mathbf{P Q}$ is 9 .

$$
\begin{array}{cc}
P=\left(\begin{array}{cc}
1 & \mathbf{k} \\
3 & 3
\end{array}\right) \text { and } Q=\left(\begin{array}{cc}
-3 & 5 \\
1 & -2
\end{array}\right) & \text { But Det of } P Q=9 \\
P Q=\left(\begin{array}{cc}
1 & \mathbf{k} \\
3 & 3
\end{array}\right)\left(\begin{array}{cc}
-3 & 5 \\
1 & -2
\end{array}\right) & \text { Therefore; } \\
=\left(\begin{array}{cc}
-3+\mathbf{k} & 5-2 k \\
0 & 9
\end{array}\right) & -3(-3+\mathbf{k})=9 \\
& -\mathbf{k}=1 \\
\mathbf{k}=4
\end{array}
$$

8) Given that $\mathbf{P}=\left(\begin{array}{ll}\mathrm{k} & 4 \\ 3 & 2\end{array}\right)$ and $\mathbf{Q}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, find k if $|\mathbf{P Q}|=4$

$$
\begin{gathered}
P=\left(\begin{array}{ll}
k & 4 \\
3 & 2
\end{array}\right) \text { and } Q=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \\
P Q=\left(\begin{array}{ll}
k & 4 \\
3 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \\
=\left(\begin{array}{cc}
k+12 & k+16 \\
9 & 14
\end{array}\right)
\end{gathered}
$$

But Det of $P Q=4$

Therefore;

$$
\begin{gathered}
14(k+12)-9(k+16)=4 \\
14 k+168-9 k-144=4 \\
5 k+24=4 \\
5 k=-20 \\
k=-4
\end{gathered}
$$

9) Find the value of x given that the matrix $\mathbf{R}=\left(\begin{array}{cc}x & 6 \\ 4 & x-2\end{array}\right)$ is singular.

For singulsr matrix;

$$
\begin{gathered}
\text { Det }=0 \\
x(x-2)-24=0 \\
x^{2}-2 x-24=0
\end{gathered}
$$

Using quadratic formula;

$$
x=\frac{2 \pm \sqrt{4+96}}{2}
$$

$$
\begin{gathered}
=\frac{2 \pm 10}{2} \\
x=6 \\
\text { or } \\
x=-4
\end{gathered}
$$

10) Given that $\mathbf{A}=\left(\begin{array}{ll}x & 0 \\ 5 & y\end{array}\right)$, find the value of x and y if $\mathbf{A}^{2}=\mathbf{I}$

$$
\begin{align*}
& \mathrm{A}^{2}=\text { Identity } \tag{eq. 2}\\
& A^{2}=\left(\begin{array}{ll}
x & 0 \\
5 & y
\end{array}\right)\left(\begin{array}{ll}
x & 0 \\
5 & y
\end{array}\right) \\
& =\left(\begin{array}{cc}
x^{2} & 0 \\
5 x+5 y & y^{2}
\end{array}\right) \\
& I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
x^{2} & 0 \\
5 x+5 y & y^{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& x^{2}+y^{2}=1+1 \\
& x^{2}+y^{2}=2 \ldots \ldots . \text { eq. } 1 \\
& 5 x+5 y=0 \\
& 5 x=-5 y \\
& \mathbf{x}=-\mathbf{y} \\
& \text { solving simulteneousely; } \\
& (-y)^{2}+y^{2}=2 \\
& y^{2}+y^{2}=2 \\
& 2 y^{2}=2 \\
& y^{2}=1 \\
& y=\sqrt{1} \\
& y= \pm 1 \\
& \text { at } y=1 \\
& \mathrm{x}=-1 \\
& \text { at } y=-1 \\
& \mathrm{x}=1 \text {. }
\end{align*}
$$

11) Given that $\mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ 2 & \mathrm{x}\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}-\frac{3}{2} & -\frac{1}{2} \\ \mathrm{x} & \mathrm{x}-12\end{array}\right)$, find x if $\mathbf{A B}$ has no inverse.

$$
\left(\begin{array}{ll}
0 & 1 \\
2 & x
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
-\frac{3}{2} & -\frac{1}{2} \\
x & x-12
\end{array}\right)
$$

$A B$ is singular;

$$
\begin{aligned}
& \mathrm{AB}=\left(\begin{array}{ll}
0 & 1 \\
2 & \mathrm{x}
\end{array}\right)\left(\begin{array}{cc}
-\frac{3}{2} & -\frac{1}{2} \\
\mathrm{x} & \mathrm{x}-12
\end{array}\right) \\
& =\left(\begin{array}{cc}
\mathrm{x} & \mathrm{x}-12 \\
-3+\mathrm{x}^{2} & -1+\mathrm{x}^{2}-12 \mathrm{x}
\end{array}\right)
\end{aligned}
$$

For singular matrix;

$$
\begin{gathered}
x\left(-1+x^{2}-12 x\right)-\left(-3+x^{2}\right)(x-12)=0 \\
\left(-x+x^{3}-12 x^{2}\right)-\left(-3 x+36+x^{3}-12 x^{2}\right)=0 \\
-x+x^{3}-12 x^{2}+3 x-36-x^{3}+12 x^{2}=0 \\
-x+3 x-36=0 \\
2 x=36 \\
x=18
\end{gathered}
$$

12) Given that $\mathbf{A}=\left(\begin{array}{cc}1 & 0 \\ -2 & 3\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right)$ and $\mathbf{C}=\mathbf{2 A B}-\mathbf{A}^{2}$, determine the matrix \mathbf{C}.

$$
\begin{gathered}
A=\left(\begin{array}{cc}
1 & 0 \\
-2 & 3
\end{array}\right), B=\left(\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right) \\
A B=\left(\begin{array}{cc}
1 & 0 \\
-2 & 3
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right) \\
=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \\
2 A B=2\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \\
=\left(\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right)
\end{gathered}
$$

$$
\begin{gathered}
A^{2}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-2 & 3
\end{array}\right) \\
=\left(\begin{array}{cc}
1 & 0 \\
-8 & 9
\end{array}\right) \\
C=2 A B-A^{2} \\
=\left(\begin{array}{cc}
6 & 0 \\
0 & 6
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
-8 & 9
\end{array}\right) \\
=\left(\begin{array}{cc}
5 & 0 \\
8 & -3
\end{array}\right) .
\end{gathered}
$$

13) Matrix $\mathbf{A}=\left(\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}11 & 3 \\ 4 & 1\end{array}\right)$. Find C if $\mathrm{BC}=\mathrm{A}$.

$$
\left.\begin{array}{c|c}
A=\left(\begin{array}{cc}
2 & 4 \\
3 & 6
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
11 & 3 \\
4 & 1
\end{array}\right) & a=7 \\
\text { Let } C=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & \text { From eq. } 2 \\
B C=\left(\begin{array}{cc}
11 & 3 \\
4 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
(11 a+3 c & 11 b+3 d
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
11 a+3 c & 11 b+3 d \\
4 a+c & 4 b+d
\end{array}\right)
$$

But;

$$
\mathbf{B C}=\mathbf{A}
$$

$$
\begin{gathered}
\left(\begin{array}{cc}
11 a+3 c & 11 b+3 d \\
4 a+c & 4 b+d
\end{array}\right)=\left(\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right) \\
11 a+3 c=2 \ldots \ldots \ldots \text { eq. } 1 \\
4 a+c=3 \ldots \ldots \ldots \ldots \text { eq. } 2 \\
11 b+3 d=4 \ldots \ldots \ldots . \text { eq. } 3 \\
4 b+d=6 \ldots \ldots \ldots \ldots \text { eq. } 4
\end{gathered}
$$

Solving eq. 1 and eq. 2 simultaneousely;

$$
\begin{gathered}
11 a+3 c=2 \\
\frac{12 a+3 c=9}{-a=-7}
\end{gathered}
$$

Solving eq. 3 and 4 simultaneousely;

$$
\begin{gathered}
11 b+3 d=4 \\
\frac{12 b+3 d=18}{-b=-14} \\
\hline-b=14
\end{gathered}
$$

From eq. 4

$$
56+d=6
$$

$$
d=6=56
$$

$$
d=-50
$$

$$
C=\left(\begin{array}{cc}
7 & 14 \\
-25 & -50
\end{array}\right)
$$

14) Find the value of x for which the matrix $F=\left(\begin{array}{cc}x & -3 \\ 0 & x-1\end{array}\right)$ is singular.

$$
F=\left(\begin{array}{cc}
x & -3 \\
0 & x-1
\end{array}\right)
$$

For singular matrix, Det $=0$

$$
\begin{gathered}
x(x-1)-0=0 \\
x(x-1)=0
\end{gathered}
$$

$$
\begin{gathered}
x=0 \\
\text { or } \\
x-1=0 \\
x=1
\end{gathered}
$$

15) Given that $\mathbf{A}=\left(\begin{array}{ll}3 & -4 \\ 7 & -1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ccc}0 & -1 & -2 \\ 4 & 2 & -3\end{array}\right)$, find the transpose of $\mathbf{A B}$.

$$
\begin{array}{rlrl}
\left(\begin{array}{ll}
3 & -4 \\
7 & -1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
0 & -1 & -2 \\
4 & 2 & -3
\end{array}\right) \\
A B & =\left(\begin{array}{ll}
3 & -4 \\
7 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & -2 \\
4 & 2 & -3
\end{array}\right) \\
& =\left(\begin{array}{cc}
-16 & -11 \\
-4 & -9 \\
-11
\end{array}\right) & A B=\left(\begin{array}{ccc}
-16 & -11 & 6 \\
-4 & -9 & -11
\end{array}\right) \\
& & (\mathrm{AB})^{\mathrm{T}}=\left(\begin{array}{cc}
-16 & -4 \\
-11 & -9 \\
6 & -11
\end{array}\right) .
\end{array}
$$

$$
\text { A is a } 2 \times 3 \text { Matrix }
$$

16) Given that $\mathbf{A}=\left(\begin{array}{ccc}4 & 3 & 1 \\ 2 & 1 & -2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}2 & 3 \\ 1 & -2 \\ 4 & -1\end{array}\right)$, find the determinant of $\mathbf{A B}$.

$$
\left.A=\left(\begin{array}{ccc}
4 & 3 & 1 \\
2 & 1 & -2
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
2 & 3 \\
1 & -2 \\
4 & -1
\end{array}\right) \quad \begin{array}{c}
15 \\
-3 \\
-3
\end{array}\right)
$$

17) Use matrix method to solve the equation $\begin{gathered}2 x+3 y=13 \\ 3 x=2 y\end{gathered}$

$$
\begin{aligned}
& \left(\begin{array}{cc}
2 & 3 \\
3 & -2
\end{array}\right)\binom{x}{y}=\binom{13}{0} \\
& \text { Det; } \\
& =-4-9 \\
& =-13 \\
& -\frac{1}{13}\left(\begin{array}{cc}
-2 & -3 \\
-3 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{2}{13} & \frac{3}{13} \\
\frac{3}{13} & -\frac{2}{13}
\end{array}\right) \\
& \left(\begin{array}{cc}
\frac{2}{13} & \frac{3}{13} \\
\frac{3}{13} & -\frac{2}{13}
\end{array}\right)\left(\begin{array}{cc}
2 & 3 \\
3 & -2
\end{array}\right)\binom{x}{y} \\
& =\left(\begin{array}{cc}
\frac{2}{13} & \frac{3}{13} \\
\frac{3}{13} & -\frac{2}{13}
\end{array}\right)\binom{13}{0} \\
& \binom{x}{y}=\binom{2}{3} \\
& x=2 \\
& y=3 .
\end{aligned}
$$

18) A matrix $\mathbf{P}=\left(\begin{array}{cc}2 & -1 \\ -4 & 3\end{array}\right), \mathbf{Q}=\binom{x}{y}$ and $\mathbf{R}=\binom{2}{1}$. Find the values of x and y if $\mathbf{P Q}=\mathbf{R}$ using matrix method.

$$
\begin{gathered}
P=\left(\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right), Q=\binom{x}{y} \text { and } R=\binom{2}{1} \\
P Q=\left(\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right)\binom{x}{y}
\end{gathered}
$$

But;

$$
\begin{gathered}
P Q=R \\
\left(\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right)\binom{x}{y}=\binom{2}{1} \\
\text { Det }=6-4 \\
=2
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{2}\left(\begin{array}{cc}
3 & 1 \\
4 & 2
\end{array}\right)=\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2} \\
2 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
\frac{3}{2} & \frac{1}{2} \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
\frac{3}{2} & \frac{1}{2} \\
2 & 1
\end{array}\right)\binom{2}{1} \\
\binom{x}{y}=\binom{3.5}{5} \\
x=3.5 \\
y=5 .
\end{gathered}
$$

19) Given that $\mathbf{A}=\left(\begin{array}{cc}3 & 2 \\ 4 & -1\end{array}\right)$, find $\mathbf{A}^{-\mathbf{1}}$ hence solve the equation $\begin{gathered}3 a+2 b=12 \\ 4 a-b=5\end{gathered}$

$$
\begin{gathered}
A=\left(\begin{array}{cc}
3 & 2 \\
4 & -1
\end{array}\right) \\
\text { Det; } \\
=-3-8 \\
=-11 \\
A^{-1}=-\frac{1}{11}\left(\begin{array}{cc}
-1 & -2 \\
-4 & 3
\end{array}\right) \\
=\left(\begin{array}{cc}
\frac{1}{11} & \frac{2}{11} \\
\frac{4}{11} & -\frac{3}{11}
\end{array}\right) \\
\text { From; } \\
3 a+2 b=12 \\
4 a-b=5
\end{gathered}
$$

20) Given that $\mathbf{A}=\left(\begin{array}{cc}3 & 2 \\ -1 & 3\end{array}\right)$, find a matrix B if $A B=I$ hence determine the point where the lines $3 x+2 y=10$ and $3 y-x=4$ intersect.

$$
A=\left(\begin{array}{cc}
3 & 2 \\
-1 & 3
\end{array}\right)
$$

Let B be $\left(\begin{array}{ll}a & b \\ c & c\end{array}\right)$

$$
\begin{aligned}
& A B=\left(\begin{array}{cc}
3 & 2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
3 a+2 c & 3 b+2 d \\
-a+3 c & -b+3 d
\end{array}\right)
\end{aligned}
$$

$$
\text { But } \mathbf{A B}=\mathbf{I}
$$

$$
\left(\begin{array}{cc}
3 a+2 c & 3 b+2 d \\
-a+3 c & -b+3 d
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
3 a+2 c=1 \ldots . . \text { eq. } 1
$$

$$
-\mathbf{a}+3 \mathbf{c}=\mathbf{0}
$$

$$
-\mathbf{a}=-3 \mathbf{c}
$$

$$
\mathrm{a}=3 \mathrm{c} \ldots . \text { eq. } 2
$$

Substituting eq. 2 into eq. 1

$$
\begin{gathered}
9 c+2 c=1 \\
11 c=1 \\
c=\frac{1}{11}
\end{gathered}
$$

$$
\begin{gathered}
a=\frac{3}{11} \\
3 b+2 d=0 \\
3 b=-2 d \\
b=-\frac{2}{3} d \ldots . . \text { eq. } 3 \\
-b+3 d=1 \\
\frac{2}{3} d+3 d=1 \ldots . . e q .4
\end{gathered}
$$

Substituting eq. 3 into eq. 4;

$$
\begin{gathered}
2 d+9 d=3 \\
11 d=3 \\
d=\frac{3}{11} \\
b=-\frac{2}{3}\left(\frac{3}{11}\right) \\
b=-\frac{2}{11}
\end{gathered}
$$

$$
B=\left(\begin{array}{cc}
\frac{3}{11} & -\frac{2}{11} \\
\frac{1}{11} & \frac{3}{11}
\end{array}\right)
$$

B is the inverse of A
From;

$$
\begin{aligned}
3 x+2 y & =10 \\
3 y-x & =4
\end{aligned}
$$

We have;

$$
\begin{gathered}
\left(\begin{array}{cc}
3 & 2 \\
-1 & 3
\end{array}\right)\binom{x}{y}=\binom{10}{4} \\
\binom{x}{y}=\left(\begin{array}{cc}
\frac{3}{11} & -\frac{2}{11} \\
\frac{1}{11} & \frac{3}{11}
\end{array}\right)\binom{10}{4} \\
\binom{x}{y}=\binom{2}{2} \\
x=2 \\
y=2 .
\end{gathered}
$$

21) (a) Given that matrix $M=\left(\begin{array}{cc}-3 & -2 \\ 4 & 3\end{array}\right)$, find M^{2}.

$$
\begin{gathered}
\mathbf{M}=\left(\begin{array}{cc}
-3 & -2 \\
4 & 3
\end{array}\right) \\
\mathbf{M}^{2}=\left(\begin{array}{cc}
-3 & -2 \\
4 & 3
\end{array}\right)\left(\begin{array}{cc}
-3 & -2 \\
4 & 3
\end{array}\right) \\
=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{gathered}
$$

(b) In order to pay for a cinema ticket, a fixed price of Ksh. x is paid and Ksh. y for every movie watched. A ticket costs Ksh. 201 for 4 movies and Ksh. 245 for 5 movies.
i. Form two linear equations in x and y to represent the information above. (2 marks)

$$
\begin{aligned}
& x+4 y=201 \\
& x+5 y=245
\end{aligned}
$$

ii. Using a matrix method, determine the values of x and y. (4 marks)

$$
\begin{array}{c|c}
\left(\begin{array}{ll}
1 & 4 \\
1 & 5
\end{array}\right)\binom{x}{y}=\binom{210}{245} \\
\text { Det }=5-4 \\
& =1
\end{array} \quad\left(\begin{array}{cc}
5 & -4 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 4 \\
1 & 5
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
5 & -4 \\
-1 & 1
\end{array}\right)\binom{210}{245}
$$

$$
=\left(\begin{array}{cc}
5 & -4 \\
-1 & 1
\end{array}\right)
$$

iii. Determine the price for watching 6 movies. (2 marks)

$$
\begin{gathered}
x+6 y=? \\
25+6(44) \\
=k \operatorname{sh} .289 .
\end{gathered}
$$

22) (a) Given that matrix $A=\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)$, find A^{-1}

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right) \\
& \text { Det }=9-8
\end{aligned}
$$

$$
\begin{gathered}
=1 \\
A^{-1}=\left(\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right)
\end{gathered}
$$

(b) Two universities TEC and KCT purchased beans and rice. TEC bought 60 bags of beans and 80 bags of rice for a total of kshs. 240,000. KCT bought 150 bags of beans and 225 bags of rice for a total of shs. 637,500. Use the matrix method to find the price of one bag of each item. (5marks)

$$
60 b+80 r=240,000
$$

$$
150 b+225 r=637,500
$$

$$
\left(\begin{array}{cc}
60 & 80 \\
150 & 225
\end{array}\right)\binom{b}{r}
$$

$$
=\left(\begin{array}{cc}
\frac{3}{20} & -\frac{4}{75} \\
-\frac{1}{10} & \frac{1}{25}
\end{array}\right)
$$

Solution is at;

Beans cos ksh. 2, 000
Rice cost ksh. 1, 500.
(c) The price of beans later decreased in the ratio $4: 5$ while the price of rice increased by 20%. A businessman bought 20 bags of beans and 30 bags of rice. How much did he pay? (3 marks)

$$
\begin{gathered}
\text { Beans }=\frac{4}{5} \times 2000 \\
=\text { ksh. } 1,600 \\
\text { Rice }=\frac{120}{150} \times 1500 \\
=\text { kshs. } 1,800 \\
20(1600)+30(1800) \\
=\text { ksh. } 86,000
\end{gathered}
$$

23) (a) Given the matrix , $A=\left(\begin{array}{cc}4 & -1 \\ 15 & -4\end{array}\right)$, find A^{2}

$$
\begin{gathered}
A=\left(\begin{array}{cc}
4 & -1 \\
15 & -4
\end{array}\right) \\
A^{2}=\left(\begin{array}{cc}
4 & -1 \\
15 & -4
\end{array}\right)\left(\begin{array}{cc}
4 & -1 \\
15 & -4
\end{array}\right)
\end{gathered}
$$

(b) Two businessmen Thomas and Stephen bought radios and juice blenders at sh x per radio and sh y per juice blender. Thomas paid a total of shs. 60000 for 15 radios and 20 juice blenders while Stephen paid a total of shs. 64000 for 14 radios and 24 juice blenders.
i. Form a matrix equation to represent this information (2 marks)

$$
\begin{aligned}
& 15 x+20 y=60,000 \\
& 14 x+24 y=64,000
\end{aligned}
$$

ii. Use the matrix method to find the cost of one radio and one juice blender. (4 marks)

$$
\begin{aligned}
& \left(\begin{array}{ll}
15 & 20 \\
14 & 24
\end{array}\right)\binom{x}{y} \\
& =\binom{60,000}{64,000} \\
& \text { Det; } \\
& =360-280
\end{aligned}
$$

$$
=80
$$

Inverse;

$$
=\frac{1}{80}\left(\begin{array}{cc}
24 & -20 \\
-14 & 15
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
\frac{3}{10} & -\frac{1}{4} \\
-\frac{7}{40} & \frac{3}{16}
\end{array}\right)
$$

(c) Thomas sold all his radios and juice blenders at a profit of 20% per radio and 25% per juice blender. Stephen sold all his radios and juice blenders at a profit of 25% per radio and 20% per juice blender. Calculate the profit that each businessman made. (2 marks)

Thomas;

$$
15 x+20 y=60,000
$$

$$
\frac{120}{100} \times 2000
$$

$$
=\text { ksh. 2, } 400
$$

$\frac{125}{100} \times 1,500$
$=$ ksh. 1, 875
Total S. P;
$=15(2,400)+20(1,875)$
$=\mathbf{k s h} .73,500$

Thomas profit
$=73,500-60,000$
$=$ kshs, 13, 500.

Stephen;
$14 x+24 y=64,000$
$\frac{125}{100} \times 2000$
$=\mathbf{k s h} .2,500$
$\frac{120}{100} \times 1,500$
= ksh. 1, 800
Total S. P;
$=14(2500)+24(1800)$
$=\mathbf{k s h} .78,200$

Stephen Profit;
$=78,200-64,000$
= ksh. 14, 200.
24) (a) Given the matrix $\mathrm{T}=\left(\begin{array}{cc}3 & 4 \\ 7 & 12\end{array}\right)$, find T^{-1}

$$
\begin{array}{c|c}
\mathrm{T}=\left(\begin{array}{cc}
3 & 4 \\
7 & 12
\end{array}\right) \\
\text { Det }=36-28
\end{array}\left|\quad \mathrm{~T}^{-1}=\frac{1}{8}\left(\begin{array}{cc}
12 & -4 \\
-7 & 3
\end{array}\right) \quad\right| \quad=\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-\frac{7}{8} & \frac{3}{8}
\end{array}\right)
$$

(b) Dorothy, a business lady, bought 3 blow dryers and 4 shaving machines at a cost of sh. 12,000. Had she bought 7 blow dryers and 12 shaving machines, she would have spent sh. 20,000 more.
i. Taking x and y to be the prices of a blow dryer and a shaving machine respectively, form a matrix equation to represent this information. (2 marks)

$$
\begin{gathered}
3 x+4 y=12,000 \\
7 x+12 y=20,000
\end{gathered}
$$

ii. Use the matrix method to find the cost of one blow dryer and one shaving machine. (4marks)

$$
\begin{aligned}
& \left(\begin{array}{cc}
3 & 4 \\
7 & 12
\end{array}\right)\binom{x}{y} \\
& =\binom{12,000}{20,000}
\end{aligned}
$$

Det $=36-28$

$$
=8
$$

$$
\text { Inverse }=\frac{1}{8}\left(\begin{array}{cc}
12 & -4 \\
-7 & 3
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-\frac{7}{8} & \frac{3}{8}
\end{array}\right)
$$

iii. Dorothy discovered that in another shop the price of a blow dryer is 20% less while that of shaving machine is 10% higher. Calculate how much she would have saved if she bought them from that shop. (2 marks)

$$
\begin{array}{l|c|}
\frac{80}{100} \times 2000 & \text { New buying Price; } \\
=\text { ksh. } 1,600 & 3(1,600)+4(1,650) \\
\frac{110}{100} \times 1,500 & \text { = ksh. 11, 400 } \\
=\text { ksh. } 1,650 & \text { Amount saved; } \\
=12,000-11,400
\end{array}
$$

25) (a) Express A^{-1} in the form $\left(\begin{array}{ll}a & c \\ c & d\end{array}\right)$ given that $A=\left(\begin{array}{ll}1 & 1 \\ 8 & 5\end{array}\right) . \quad$ (2 marks)

$$
\begin{gathered}
A=\left(\begin{array}{ll}
1 & 1 \\
8 & 5
\end{array}\right) \\
\text { Det; } \\
=5-8 \\
=-3
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{A}^{-1} & =-\frac{1}{3}\left(\begin{array}{cc}
5 & -1 \\
-8 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\frac{5}{3} & \frac{1}{3} \\
\frac{8}{3} & -\frac{1}{3}
\end{array}\right)
\end{aligned}
$$

(b) A shirt and a blouse cost a total of Ksh. 2,700. When the price of the shirt is increased by 20% and that of the blouse is decreased by 25%, their total cost is Ksh. 2,565 . By letting the price of the shirt to be x and that of the blouse to be y ;
i. Form two simplified equations in x and y to represent the above information. (3 marks)

$$
\begin{array}{l|r}
x+y=2,700 \ldots . \text { eq. } 1 & 120 x+75 y=256,500 \\
\frac{120}{100} x+\frac{75}{100} y=2,565 & \text { Dividing through by } 15 \\
8 x+5 y=17,100 \ldots . e q .2
\end{array}
$$

Multiplying through by 100;

$$
8 x+5 y=17,100 \ldots . \text { eq. } 2
$$

ii. Using matrix method, find the cost of each item. (5 marks)

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 1 \\
8 & 5
\end{array}\right)\binom{x}{y}=\binom{2,700}{17,100} \\
A=\left(\begin{array}{ll}
1 & 1 \\
8 & 5
\end{array}\right) \\
\text { Det; } \\
=5-8 \\
=-3
\end{gathered}
$$

Inverse;

$$
=-\frac{1}{3}\left(\begin{array}{cc}
5 & -1 \\
-8 & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
-\frac{5}{3} & \frac{1}{3} \\
\frac{8}{3} & -\frac{1}{3}
\end{array}\right)
$$

The solution is at;

$$
\begin{gathered}
\left(\begin{array}{cc}
-\frac{5}{3} & \frac{1}{3} \\
\frac{8}{3} & -\frac{1}{3}
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
8 & 5
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
-\frac{5}{3} & \frac{1}{3} \\
\frac{8}{3} & -\frac{1}{3}
\end{array}\right)\binom{2,700}{17,100} \\
\binom{x}{y}=\binom{1,200}{1,500}
\end{gathered}
$$

26) (a) Given that $A=\left(\begin{array}{ll}8 & 5 \\ 6 & 4\end{array}\right)$, find the inverse of A. (2 marks)

$$
\begin{array}{c|c}
\mathrm{A}=\left(\begin{array}{cc}
8 & 5 \\
6 & 4
\end{array}\right) & =2 \\
\text { Det; } & \mathrm{A}^{-1}=\frac{1}{2}\left(\begin{array}{cc}
4 & -5 \\
-6 & 8
\end{array}\right) \\
=32-30 & =\left(\begin{array}{cc}
2 & -2.5 \\
-3 & 4
\end{array}\right) .
\end{array}
$$

(b) A student bought 16 exercise books and 10 pens at a total cost of Ksh. 1018 . If she had bought 12 exercise books and 8 pens, she would have spent Ksh 242 less.
i. Form a matrix equation to represent the information above. (2 marks)
$16 b+10 p=1018$
$\mathbf{8 b}+5 \mathbf{p}=509$
$12 b+8 p=776$
$6 b+4 p=338$.
Simmplified form;
ii. Using the inverse of A in (a) above, determine the price of each item. (4 marks)
$A^{-1}=\left(\begin{array}{cc}2 & -2.5 \\ -3 & 4\end{array}\right) \quad\left(\begin{array}{cc}2 & -2.5 \\ -3 & 4\end{array}\right)\left(\begin{array}{ll}8 & 5 \\ 6 & 4\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}}=\left(\begin{array}{cc}2 & -2.5 \\ -3 & 4\end{array}\right)\binom{509}{338}$
From;
$\left(\begin{array}{ll}8 & 5 \\ 6 & 4\end{array}\right)\binom{x}{y}=\binom{509}{338}$
Solution will be;

$$
\binom{x}{y}=\binom{48}{25}
$$

A book cost ksh. 48
A pen cost ksh. 25.
(c) Find the total cost of 4 books and 5 pens by using matrices of orders 1×2 and 2×1 respectively.
(2 marks)
Using a 2×1 Matrix;
Using 1×2 Matrix;

$$
\left(\begin{array}{ll}
4 & 5
\end{array}\right)\binom{48}{25}
$$

$=$ ksh. 317
27) To watch a movie, a fixed amount of Sh. x is charged and a further Sh. y for every movie watched. It cost Sh. 80 to watch 2 movies and Sh. 125 to watch 5 movies.
(a) Form two equations in x and y from the information above. (2 marks)

$$
\begin{gathered}
x+2 y=80 \\
x+5 y=125
\end{gathered}
$$

(b) Express the equations in (a) above in matrix form. (1 mark)

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 5
\end{array}\right)\binom{x}{y}=\binom{80}{125}
$$

(c) Use a matrix method to find the values of x and y and hence state the standing charge for watching the movie. (5 marks)

$$
\left.\begin{array}{c}
\text { From; } \\
\left.\begin{array}{ll}
1 & 2 \\
1 & 5
\end{array}\right)\binom{\mathrm{x}}{\mathrm{y}}=\binom{80}{125} \\
\text { Det; } \\
=5-2 \\
=3 \\
\text { Inverse; } \\
-\frac{1}{3} \\
\frac{1}{3}
\end{array}\right) \quad\left(\begin{array}{cc}
\frac{5}{3} & -\frac{2}{3} \\
1 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
y
\end{array}\right)=\left(\begin{array}{cc}
\frac{5}{3} & -\frac{2}{3} \\
-\frac{1}{3} & \frac{1}{3}
\end{array}\right)\binom{80}{125}
$$

$=\left(\begin{array}{cc}\frac{5}{3} & -\frac{2}{3} \\ -\frac{1}{3} & \frac{1}{3}\end{array}\right)$
The solution will be;
(d) Find the cost of watching 8 movies. (2 marks)

$$
\begin{gathered}
=x+8 y \\
=50+(15 \times 8) \\
=\mathbf{k s h} . \mathbf{1 7 0} .
\end{gathered}
$$

28) (a) Given that $\mathrm{T}^{-1}=\left(\begin{array}{cc}\frac{3}{2} & -\frac{1}{2} \\ -\frac{7}{8} & \frac{3}{8}\end{array}\right)$, find the matrix \mathbf{T} (2 marks)

$$
\begin{aligned}
& \mathrm{TT}^{-1}=\mathrm{I} \\
& \text { Let } T=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \mathrm{TT}^{-1}=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-\frac{7}{8} & \frac{3}{8}
\end{array}\right) \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-\frac{7}{8} & \frac{3}{8}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
\frac{3}{2} a-\frac{7}{8} b & -\frac{1}{2} a+\frac{3}{8} b \\
\frac{3}{2} c-\frac{7}{8} d & -\frac{1}{2} c+\frac{3}{8} d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \frac{3}{2} a-\frac{7}{8} b=1 \ldots \ldots \ldots \text {....eq. } 1 \\
& -\frac{1}{2} a+\frac{3}{8} b=0 \\
& -\frac{1}{2} a=-\frac{3}{8} b \\
& a=\frac{3}{4} b \\
& \text { eq. } 2
\end{aligned}
$$

Substituting in eq. 1 , we have;

$$
\begin{gathered}
\frac{3}{2}\left(\frac{3}{4} b\right)-\frac{7}{8} b=1 \\
\frac{9}{8} b-\frac{7}{8} b=1
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{4} b=1 \\
b=4 \\
a=\frac{3}{4}(4) \\
a=3 \\
\frac{3}{2} c-\frac{7}{8} d=0 \\
\frac{3}{2} c=\frac{7}{8} d \\
c=\frac{7}{12} d \ldots . . \text { eq. } 3 \\
-\frac{1}{2} c+\frac{3}{8} d=1 \ldots \ldots . e q .4
\end{gathered}
$$

Substituting eq. 3 into eq. 4 ;

$$
\begin{gathered}
-\frac{1}{2}\left(\frac{7}{12} d\right)+\frac{3}{8} d=1 \\
-\frac{7}{24} d+\frac{3}{8} d=1 \\
\frac{1}{12} d=1 \\
d=12 \\
c=\frac{7}{12}(12) \\
c=7 \\
T=\left(\begin{array}{ll}
3 & 4 \\
7 & 12
\end{array}\right)
\end{gathered}
$$

(b) Two ladies bought trouser suits and skirt suits from a boutique at Ksh x and sh y per item respectively. Jane paid Ksh 12,000 for 3 trouser suits and 4 skirt suits. Lucy paid Ksh 32,000 for 7 trouser suits and 12 skirt suits.
i. Form a matrix equation to represent this information (2 marks)

$$
\begin{array}{l|c}
3 x+4 y=12,000 & \text { Matrix equation are; } \\
7 x+12 y=32,000
\end{array}\left(\begin{array}{cc}
3 & 4 \\
7 & 12
\end{array}\right)\binom{x}{y}=\binom{12,000}{32,000}
$$

ii. Use matrix method to find the cost of one trouser suit and one skirt suit. (4 marks)

$$
\begin{gathered}
\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-\frac{7}{8} & \frac{3}{8}
\end{array}\right)\left(\begin{array}{cc}
3 & 4 \\
7 & 12
\end{array}\right)\binom{x}{y}=\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-\frac{7}{8} & \frac{3}{8}
\end{array}\right)\binom{12,000}{32,000} \\
\binom{x}{y}=\binom{2,000}{1,500}
\end{gathered}
$$

$$
=\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-\frac{7}{8} & \frac{3}{8}
\end{array}\right)
$$

Solution will be;
(c) By using 1×2 and 2×1 matrices respectively, calculate the total cost of 5 trouser suits and 7 skirt suits. (2 marks)

$$
\begin{aligned}
& \text { Using } 1 \times 2 \text { Matrix } \\
& \begin{array}{r}
\left(\begin{array}{ll}
5 & 7
\end{array}\right)\binom{2,000}{1,500} \\
=\text { ksh. } 20,500
\end{array}
\end{aligned}
$$

Using 2×1 matrix;

$$
\binom{5}{7}(2,000 \quad 1,500)
$$

The matrix is incompatible.
29) In a week, a school buys 15 bags of maize, 8 bags of beans, 16 bags of rice and 4 bags of sugar. The prices per bag of each commodity are sh. 1400 , sh. 2600 , sh. 1600 and sh. 1500 respectively.
(a) Form 1×4 matrix to represent the number of bags bought by the school. (1 mark)
(15
16
4)
(b) Form a 4×1 matrix representing the cost of the above commodities. (1 mark)

$$
\left(\begin{array}{l}
1,400 \\
2,600 \\
1,600 \\
1,500
\end{array}\right)
$$

(c) Find by matrix method the amount of money the school spends per week. (2 marks)

$$
\begin{aligned}
& \left(\begin{array}{llll}
15 & 8 & 16 & 4
\end{array}\right)\left(\begin{array}{l}
1,400 \\
2,600 \\
1,600 \\
1,500
\end{array}\right) \\
& =21,000+20,800+25,600+6,000 \\
& =\text { ksh. } 73,400 .
\end{aligned}
$$

(d) A transporter has two types of buses; type A and type B. Type A has a capacity for 52 passengers and 200kg of luggage while type B has a capacity for 32 passengers and 300 kg of luggage. At full capacity, the revenue from type A is sh. 62,000 and from type B is sh. 47,000 . Taking sh. x to be the fare per passenger and sh. y to be the charge per kilogram of luggage;
i. Form a pair of linear equations to represent this information. (1 mark)

$$
\begin{aligned}
52 x+200 y & =62,000 \\
32 x+300 y & =47,000
\end{aligned}
$$

ii. Use matrix method to find the values of x and y. (5 marks)

$$
\left.\begin{array}{c|c}
\text { From; } \\
52 \mathrm{x}+200 \mathrm{y}=62,000 \\
32 \mathrm{x}+300 \mathrm{y}=47,000 . \\
\left(\begin{array}{ll}
52 & 200 \\
32 & 300
\end{array}\right)\binom{\mathrm{x}}{\mathrm{y}}=\binom{62,000}{47,000} \\
\text { Det; } & \text { Solution will be; } \\
=\left(\begin{array}{cc}
300 \times 52
\end{array}\right)-(32 \times 200
\end{array}\right) \quad\left(\begin{array}{cc}
\frac{3}{92} & -\frac{1}{46} \\
-\frac{2}{575} & \frac{13}{2300}
\end{array}\right)\left(\begin{array}{cc}
52 & 200 \\
32 & 300
\end{array}\right)\binom{\mathrm{x}}{\mathrm{y}}
$$

$$
=\left(\begin{array}{cc}
\frac{3}{92} & -\frac{1}{46} \\
-\frac{2}{575} & \frac{13}{2300}
\end{array}\right)
$$

30) (a) Given that $P=\left(\begin{array}{cc}3 & -1 \\ x & 5\end{array}\right)$ and $Q=\left(\begin{array}{cc}x & -11 \\ 8 & 18\end{array}\right)$, find x if $\left|P^{2}-Q\right|=1$

$$
\begin{array}{c|c}
P=\left(\begin{array}{cc}
3 & -1 \\
x & 5
\end{array}\right) \text { and } Q=\left(\begin{array}{cc}
x & -11 \\
8 & 18
\end{array}\right) & {\left[63-9 x-14 x+2 x^{2}\right]-[24 x-24]=1} \\
P^{2}=\left(\begin{array}{cc}
3 & -1 \\
x & 5
\end{array}\right)\left(\begin{array}{cc}
3 & -1 \\
x & 5
\end{array}\right) & {\left[63-23 x+2 x^{2}\right]-[24 x-24]=1} \\
=\left(\begin{array}{cc}
9-x & -8 \\
8 x & -x+25
\end{array}\right) & 23 x+2 x^{2}-24 x+24=1
\end{array}
$$

$$
P^{2}-Q=\left(\begin{array}{cc}
9-x & -8 \\
8 x & -x+25
\end{array}\right)-\left(\begin{array}{cc}
x & -11 \\
8 & 18
\end{array}\right)
$$

Using quadrtaic formula;

$$
=\left(\begin{array}{cc}
9-2 x & 3 \\
8 x-8 & -x+7
\end{array}\right)
$$

But;

$$
\left|\mathbf{P}^{2}-\mathbf{Q}\right|=1
$$

$$
\begin{gathered}
x=\frac{47 \pm \sqrt{2209-688}}{4} \\
=\frac{47 \pm 39}{4} \\
x=21.5
\end{gathered}
$$

Det = 1;
or

$$
[(9-2 x)(7-x)]-[(3)(8 x-8)]=1
$$

$$
x=2
$$

(b) John intends to buy 10 exercise books, 3 fountain pens and a bottle of ink while Ken intends to buy 12 exercise books, 2 fountain pens and 2 bottles of ink. The items can be bought from two stationers; A and B. Stationer A sells an exercise book at sh. 45, a fountain pen at sh. 100 and a bottle of ink at sh. 80. Stationer B sells an exercise book at sh. 50, a fountain pen at sh. 95 and a bottle of ink at sh. 75 .
i. Use a 2×3 matrix to represent number of items bought by John and Ken. (1 mark)

$$
\left(\begin{array}{lll}
10 & 3 & 1 \\
12 & 2 & 2
\end{array}\right)
$$

ii. Use a 3×2 matrix to represent the prices of the items from the two stationers. (1 mark)

$$
\left(\begin{array}{cc}
45 & 50 \\
100 & 95 \\
80 & 75
\end{array}\right)
$$

iii. Using the matrices in (a) and (b) above, determine the total cost that would be incurred by John and Ken when they buy from the two stationers. (3 marks)

$$
\begin{gathered}
\left(\begin{array}{lll}
10 & 3 & 1 \\
12 & 2 & 2
\end{array}\right)\left(\begin{array}{cc}
45 & 50 \\
100 & 95 \\
80 & 75
\end{array}\right) \\
=\left(\begin{array}{ll}
(10 \times 45)+(3 \times 100)+(1 \times 80) & (10 \times 50)+(3 \times 95)+(1 \times 75) \\
(12 \times 45)+(2 \times 100)+(1 \times 80) & (12 \times 50)+(2 \times 95)+(1 \times 75)
\end{array}\right) \\
=\left(\begin{array}{ll}
830 & 860 \\
900 & 940
\end{array}\right)
\end{gathered}
$$

