SECTIONA 1) Given that $P = \begin{pmatrix} x & -1 \\ 15 & -x \end{pmatrix}$ and that $P^2 = I$, find x. $P = \begin{pmatrix} x & -1 \\ 15 & -x \end{pmatrix}$ $P^2 = Identity$ $P^2 = Identity$ $P^2 = \begin{pmatrix} x & -1 \\ 15 & -x \end{pmatrix} \begin{pmatrix} x & -1 \\ 15 & -x \end{pmatrix}$ $= \begin{pmatrix} x^2 - 15 & -x + x \\ 15x - 15x & -15 + x^2 \end{pmatrix}$ $= \begin{pmatrix} x^2 - 15 & 0 \\ 0 & -15 + x^2 \end{pmatrix}$

2) Determine the value of x if the matrix $\mathbf{A} = \begin{pmatrix} 2x & -8 \\ -4 & x \end{pmatrix}$ has no inverse. $\mathbf{A} = \begin{pmatrix} 2x & -8 \\ -4 & x \end{pmatrix}$ Determinant = 0 $2x^2 - 32 = 0$ $\mathbf{x} = \pm 4.$

3) Find the value of x of which the matrix $\mathbf{B} = \begin{pmatrix} x+1 & 5 \\ 4 & x \end{pmatrix}$ is singular.

 $B = \begin{pmatrix} x+1 & 5\\ 4 & x \end{pmatrix}$ Determinant = 0 x(x+1) - 20 = 0 $x^{2} + x - 20 = 0$ Using quadratic formula; $x = \frac{-1 \pm \sqrt{1+80}}{2}$ $x = -\frac{1 \pm 9}{2}$ x = -5 0r x = -4.

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

$$\begin{array}{l} \text{(b) Given that } \mathbf{M} = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix} \text{ and } \mathbf{N} = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} \text{, find } \mathbf{M}^{-1}\mathbf{N} \\ & \mathbf{M} = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix} \text{ and } \mathbf{N} = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} \\ & \mathbf{M}^{-1} = ? \\ & \mathbf{Det } \mathbf{M}; \\ & = (4 \times 3) - (2 \times 5) \\ & = 12 - 10 \\ & = 2 \\ & \mathbf{M}^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -5 \\ -2 & 4 \end{pmatrix} \end{array}$$

5) Find the value of y given that the matrix $\mathbf{T} = \begin{pmatrix} y+7 & 4 \\ -3 & y \end{pmatrix}$ is singular. $\mathbf{T} = \begin{pmatrix} y+7 & 4 \\ -3 & y \end{pmatrix}$ Determinant = 0 y(y+7) + 12 = 0 $y^2 + 7y + 12 = 0$ using quadratic formula; $y = \frac{-7 \pm \sqrt{29 - 48}}{2}$ $y = -\frac{7 \pm 1}{2}$ y = -4y = -3.

6) Given that A and B are matrices $\mathbf{A} = \begin{pmatrix} 0 & 2 \\ 0 & x-1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} x & 2 \\ 1 & -2 \end{pmatrix}$, find x if A + B is singular. $\mathbf{A} = \begin{pmatrix} 0 & 2 \\ 0 & x-1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} x & 2 \\ 1 & -2 \end{pmatrix}$ $\mathbf{A} + \mathbf{B}$; $= \begin{pmatrix} 0 & 2 \\ 0 & x-1 \end{pmatrix} + \begin{pmatrix} x & 2 \\ 1 & -2 \end{pmatrix}$ $= \begin{pmatrix} x & 4 \\ 1 & x-3 \end{pmatrix}$ For singular matrix; $\mathbf{Det} = 0$ $\mathbf{x}(x-3) - 4 = 0$ $\mathbf{A} = \begin{pmatrix} 0 & 2 \\ 1 & x-3 \end{pmatrix}$ $\mathbf{A} = \begin{pmatrix} x & 2 \\ 1 & -2 \end{pmatrix}$

7) Given that $\mathbf{P} = \begin{pmatrix} 1 & k \\ 3 & 3 \end{pmatrix}$ and $\mathbf{Q} = \begin{pmatrix} -3 & 5 \\ 1 & -2 \end{pmatrix}$, for $\mathbf{P} = \begin{pmatrix} 1 & k \\ 3 & 3 \end{pmatrix}$ and $\mathbf{Q} = \begin{pmatrix} -3 & 5 \\ 1 & -2 \end{pmatrix}$ $\mathbf{PQ} = \begin{pmatrix} 1 & k \\ 3 & 3 \end{pmatrix} \begin{pmatrix} -3 & 5 \\ 1 & -2 \end{pmatrix}$ $= \begin{pmatrix} -3 + k & 5 - 2k \\ 0 & 9 \end{pmatrix}$	and k if the determinant of PQ is 9. But Det of PQ = 9 Therefore; 9(-3 + k) = 9 -3 + k = 1 k = 4.
8) Given that $\mathbf{P} = \begin{pmatrix} \mathbf{k} & 4 \\ 3 & 2 \end{pmatrix}$ and $\mathbf{Q} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, find \mathbf{k} $\mathbf{P} = \begin{pmatrix} \mathbf{k} & 4 \\ 3 & 2 \end{pmatrix}$ and $\mathbf{Q} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ $\mathbf{PQ} = \begin{pmatrix} \mathbf{k} & 4 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ $= \begin{pmatrix} \mathbf{k} + 12 & \mathbf{k} + 16 \\ 9 & 14 \end{pmatrix}$ But Det of $\mathbf{PQ} = 4$	if $ PQ = 4$ Therefore; 14(k + 12) - 9(k + 16) = 4 14k + 168 - 9k - 144 = 4 5k + 24 = 4 5k = -20 k = -4.

9) Find the value of x given that the matrix $\mathbf{R} = \begin{pmatrix} x & 6 \\ 4 & x-2 \end{pmatrix}$ is singular. For singular matrix; Det = 0 x(x-2) - 24 = 0 $x^2 - 2x - 24 = 0$ Using quadratic formula; $2 \pm \sqrt{4 \pm 96}$

$$\mathbf{x} = \frac{2 \pm \sqrt{4} + 96}{2}$$

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

10) Given that $\mathbf{A} = \begin{pmatrix} x & 0 \\ 5 & y \end{pmatrix}$, find the value of x and y if $\mathbf{A}^2 = \mathbf{I}$	
$A^2 = $ Identity	$\mathbf{x} = -\mathbf{y} \dots \mathbf{e} \mathbf{q} .2$
$\mathbf{A}^2 = \begin{pmatrix} \mathbf{x} & 0 \\ 5 & \mathbf{y} \end{pmatrix} \begin{pmatrix} \mathbf{x} & 0 \\ 5 & \mathbf{y} \end{pmatrix}$	solving simulteneousely;
	$(-y)^2 + y^2 = 2$
$= \begin{pmatrix} \mathbf{x}^2 & 0 \\ \mathbf{5x} + \mathbf{5y} & \mathbf{y}^2 \end{pmatrix}$	$\mathbf{y}^2 + \mathbf{y}^2 = 2$
	$2y^2 = 2$
$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\mathbf{y}^2 = 1$
$\begin{pmatrix} \mathbf{x}^2 & 0 \\ \mathbf{5x} + \mathbf{5y} & \mathbf{y}^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\mathbf{y} = \sqrt{1}$
	$\mathbf{y} = \pm 1$
$\mathbf{x}^2 + \mathbf{y}^2 = 1 + 1$	at y = 1
$\mathbf{x}^2 + \mathbf{y}^2 = 2 \dots \dots \mathbf{eq}. 1$	x = -1
$5\mathbf{x} + 5\mathbf{y} = 0$	at $\mathbf{y} = -1$
$5\mathbf{x} = -5\mathbf{y}$	$\mathbf{x} = 1.$

(11) Given that
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 2 & x \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -\frac{3}{2} & -\frac{1}{2} \\ x & x - 12 \end{pmatrix}$, find x if AB has no inverse.
 $\begin{pmatrix} 0 & 1 \\ 2 & x \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -\frac{3}{2} & -\frac{1}{2} \\ x & x - 12 \end{pmatrix}$

AB is singular;

$$AB = \begin{pmatrix} 0 & 1 \\ 2 & x \end{pmatrix} \begin{pmatrix} -\frac{3}{2} & -\frac{1}{2} \\ x & x - 12 \end{pmatrix}$$
$$= \begin{pmatrix} x & x - 12 \\ -3 + x^2 & -1 + x^2 - 12x \end{pmatrix}$$

For singular matrix;

$$x(-1 + x^{2} - 12x) - (-3 + x^{2})(x - 12) = 0$$

$$(-x + x^{3} - 12x^{2}) - (-3x + 36 + x^{3} - 12x^{2}) = 0$$

$$-x + x^{3} - 12x^{2} + 3x - 36 - x^{3} + 12x^{2} = 0$$

$$-x + 3x - 36 = 0$$

$$2x = 36$$

$$x = 18.$$

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

12) Given that
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 3 & 0 \\ 2 & 1 \end{pmatrix}$ and $\mathbf{C} = 2\mathbf{A}\mathbf{B} - \mathbf{A}^2$, determine the matrix \mathbf{C} .
 $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 & 0 \\ 2 & 1 \end{pmatrix}$
 $\mathbf{A}\mathbf{B} = \begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 2 & 1 \end{pmatrix}$
 $= \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$
 $\mathbf{2}\mathbf{A}\mathbf{B} = 2\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$
 $= \begin{pmatrix} 6 & 0 \\ 0 & -8 \end{pmatrix}$
 $= \begin{pmatrix} 5 & 0 \\ 8 & -3 \end{pmatrix}$.

13) Matrix
$$\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 11 & 3 \\ 4 & 1 \end{pmatrix}$. Find C if BC = A.
 $\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 11 & 3 \\ 4 & 1 \end{pmatrix}$
Let $\mathbf{C} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 $\mathbf{BC} = \begin{pmatrix} 11 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 $= \begin{pmatrix} 11a + 3c & 11b + 3d \\ 4a + c & 4b + d \end{pmatrix}$
From equations of the constant of the co

But;

 $\mathbf{BC} = \mathbf{A}$

 $\begin{pmatrix} \mathbf{11a}+\mathbf{3c} & \mathbf{11b}+\mathbf{3d} \\ \mathbf{4a}+\mathbf{c} & \mathbf{4b}+\mathbf{d} \end{pmatrix} = \begin{pmatrix} \mathbf{2} & \mathbf{4} \\ \mathbf{3} & \mathbf{6} \end{pmatrix}$

 $11a + 3c = 2 \dots \dots eq. 1$ $4a + c = 3 \dots \dots m eq. 2$

 $11b + 3d = 4 \dots eq. 3$ $4b + d = 6 \dots \dots \dots eq. 4$

Solving eq. 1 and eq. 2 simultaneousely;

$$\frac{11a + 3c = 2}{12a + 3c = 9}$$

-a = -7

eq. 2 : = **3** - 28 -25

Solving eq. 3 and 4 simultaneousely;

$$11b + 3d = 4$$

$$12b + 3d = 18$$

$$-b = -14$$

$$b = 14$$

From eq. 4

$$56 + d = 6$$

$$d = 6 = 56$$

$$d = -50$$

$$C = \begin{pmatrix} 7 & 14 \\ -25 & -50 \end{pmatrix}.$$

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

14) Find the value of x for which the matrix
$$\mathbf{F} = \begin{pmatrix} x & -3 \\ 0 & x-1 \end{pmatrix}$$
 is singular.

$$\mathbf{F} = \begin{pmatrix} x & -3 \\ 0 & x-1 \end{pmatrix}$$
For singular matrix, Det = 0
 $\mathbf{x}(x-1) - \mathbf{0} = \mathbf{0}$
 $\mathbf{x}(x-1) = \mathbf{0}$
 $\mathbf{x} = \mathbf{1}$.

15) Given that
$$\mathbf{A} = \begin{pmatrix} 3 & -4 \\ 7 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 0 & -1 & -2 \\ 4 & 2 & -3 \end{pmatrix}$, find the transpose of \mathbf{AB} .
 $\begin{pmatrix} 3 & -4 \\ 7 & -1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & -1 & -2 \\ 4 & 2 & -3 \end{pmatrix}$
 $\mathbf{AB} = \begin{pmatrix} 3 & -4 \\ 7 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & -2 \\ 4 & 2 & -3 \end{pmatrix}$
 $= \begin{pmatrix} -16 & -11 & 6 \\ -4 & -9 & -11 \end{pmatrix}$
 $\mathbf{A is a 2 \times 3 Matrix}$
 $\mathbf{AB} = \begin{pmatrix} -16 & -11 & 6 \\ -4 & -9 & -11 \end{pmatrix}$

16) Given that
$$\mathbf{A} = \begin{pmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \\ 4 & -1 \end{pmatrix}$, find the determinant of \mathbf{AB} .
 $\mathbf{A} = \begin{pmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 2 & 3 \\ 1 & -2 \\ 4 & -1 \end{pmatrix}$
 $\mathbf{AB} = \begin{pmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & -2 \\ 4 & -1 \end{pmatrix}$
 $\mathbf{AB} = \begin{pmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & -2 \\ 4 & -1 \end{pmatrix}$
 $\mathbf{AB} = \begin{pmatrix} 15 & 5 \\ -3 & 6 \end{pmatrix}$
 $\mathbf{Det} = (15 \times 6) - (5 \times -3)$
 $= 90 + 15$
 $= 105.$

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

17) Use matrix method to solve the equation
$$2x + 3y = 13$$

 $3x = 2y$
 $\begin{pmatrix} 2 & 3 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 13 \\ 0 \end{pmatrix}$
Det;
 $= -4 - 9$
 $= -13$
 $-\frac{1}{13} \begin{pmatrix} -2 & -3 \\ -3 & 2 \end{pmatrix}$
 $= \begin{pmatrix} \frac{2}{13} & \frac{3}{13} \\ \frac{3}{13} & -\frac{2}{13} \end{pmatrix} \begin{pmatrix} 13 \\ 0 \end{pmatrix}$
 $= \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$
 $x = 2$
 $y = 3.$

18) A matrix $\mathbf{P} = \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix}$, $\mathbf{Q} = \begin{pmatrix} x \\ y \end{pmatrix}$ and $\mathbf{R} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Find the values of x and y if $\mathbf{P}\mathbf{Q} = \mathbf{R}$ using matrix method.

$$P = \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix}, Q = \begin{pmatrix} x \\ y \end{pmatrix} \text{ and } R = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$PQ = \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
But;
$$PQ = R$$

$$\begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 1 \\ 2 & 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 & 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 5 \end{pmatrix}$$

$$R = 3.5$$

$$Det = 6 - 4$$

$$= 2$$

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

19) Given that $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}$, find \mathbf{A}^{-1} hence solve the equation $\begin{aligned} 3a + 2b &= 12 \\ 4a - b &= 5 \end{aligned}$	
$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}$	$ \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 12 \\ 5 \end{pmatrix} $
Det;	Solving it;
= -3 - 8	$\begin{pmatrix} 1 & 2 \\ \hline \end{pmatrix}$
= -11	$\begin{pmatrix} \frac{1}{11} & \frac{2}{11} \\ \frac{4}{11} & -\frac{3}{11} \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \frac{1}{11} & \frac{2}{11} \\ \frac{4}{11} & -\frac{3}{11} \end{pmatrix} \begin{pmatrix} 12 \\ 5 \end{pmatrix}$
$\mathbf{A}^{-1} = -\frac{1}{11} \begin{pmatrix} -1 & -2 \\ -4 & 3 \end{pmatrix}$	$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$
$= \begin{pmatrix} \frac{1}{11} & \frac{2}{11} \\ \frac{4}{2} & -\frac{3}{2} \end{pmatrix}$	(b) $(3)a = 2$
$= \begin{pmatrix} 11 & 11 \\ \frac{4}{11} & -\frac{3}{11} \end{pmatrix}$	$\mathbf{b} = 3.$
From;	
$3\mathbf{a} + 2\mathbf{b} = 12$ $4\mathbf{a} - \mathbf{b} = 5$	

20) Given that $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ -1 & 3 \end{pmatrix}$, find a matrix B if AB = I hence determine the point where the lines 3x + 2y = 10 and 3y - x = 4 intersect.

$$A = \begin{pmatrix} 3 & 2 \\ -1 & 3 \end{pmatrix}$$

$$Let B be \begin{pmatrix} a & b \\ c & c \end{pmatrix}$$

$$AB = \begin{pmatrix} 3 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$B = \begin{pmatrix} 3a + 2c & 3b + 2d \\ -a + 3c & -b + 3d \end{pmatrix}$$

$$But AB = I$$

$$\begin{pmatrix} 3a + 2c & 3b + 2d \\ -a + 3c & -b + 3d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$But AB = I$$

$$\begin{pmatrix} 3a + 2c & 3b + 2d \\ -a + 3c & -b + 3d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$But AB = I$$

$$\begin{pmatrix} 3a + 2c & 3b + 2d \\ -a + 3c & -b + 3d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$But AB = I$$

$$\begin{pmatrix} 3a + 2c & 3b + 2d \\ -a + 3c & -b + 3d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$But AB = I$$

$$\begin{pmatrix} 2 \\ 3d + 3d = 1 \dots eq. 4 \\ Substituting eq. 3 \text{ into } eq. 4; \\ 2d + 9d = 3 \\ 11d = 3 \\ d = \frac{3}{11}$$

$$B = \begin{pmatrix} \frac{3}{11} & -\frac{2}{11} \\ \frac{3}{11} & \frac{3}{11} \end{pmatrix}$$

$$B is the inverse of A$$

$$From; \\ 3x + 2y = 10 \\ 3y - x = 4 \\ We have; \\ \begin{pmatrix} 3 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{3}{11} & -\frac{2}{11} \\ \frac{1}{11} & \frac{3}{11} \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{3}{11} & -\frac{2}{11} \\ \frac{1}{11} & \frac{3}{11} \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ \frac{2}{2} \end{pmatrix}$$

$$x = 2$$

$$y = 2.$$

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

ECTION

21) (a) Given that matrix $M = \begin{pmatrix} -3 & -2 \\ 4 & 3 \end{pmatrix}$, find M^2 . $\mathbf{M} = \begin{pmatrix} -3 & -2 \\ 4 & 3 \end{pmatrix}$ $\mathbf{M}^2 = \begin{pmatrix} -3 & -2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} -3 & -2 \\ 4 & 3 \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$

(b) In order to pay for a cinema ticket, a fixed price of Ksh. x is paid and Ksh. y for every movie watched. A ticket costs Ksh. 201 for 4 movies and Ksh. 245 for 5 movies.

i. Form two linear equations in x and y to represent the information above. (2 marks)

> x + 4y = 201x + 5y = 245

ii. Using a matrix method, determine the values of x and y. (4 marks)

Det = 5 - 4 = 1 Inverse; $ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 25 \\ 44 \end{pmatrix}$ $ x = ksh. 25$ $ y = ksh. 44.$	$\begin{pmatrix} 1 & 4 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 210 \\ 245 \end{pmatrix}$	$ \begin{pmatrix} 5 & -4 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 & -4 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 210 \\ 245 \end{pmatrix} $
x = ksh. 25 Inverse; y = ksh. 44.	Det = 5 - 4	$\binom{\mathbf{x}}{\mathbf{y}} = \binom{25}{44}$
y = ksh. 44.	_	$\mathbf{x} = \mathbf{ksh}.25$
		$\mathbf{y} = \mathbf{ksh}.44.$

iii. Determine the price for watching 6 movies. (2 marks)

> **x** + **6y** =? 25 + 6(44)= ksh. 289.

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

Page 9

(2 marks)

22) (a) Given that matrix $A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$, find A^{-1}

$$A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} = 1$$
$$A^{-1} = \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix}$$

(b) Two universities TEC and KCT purchased beans and rice. TEC bought 60 bags of beans and 80 bags of rice for a total of kshs. 240,000. KCT bought 150 bags of beans and 225 bags of rice for a total of shs. 637,500. Use the matrix method to find the price of one bag of each item. (5marks)

(c) The price of beans later decreased in the ratio 4:5 while the price of rice increased by 20%. A businessman bought 20 bags of beans and 30 bags of rice. How much did he pay? (3 marks)

Beans = $\frac{4}{5} \times 2000$ = ksh. 1, 600 Rice = $\frac{120}{150} \times 1500$ = kshs. 1, 800 20(1600) + 30(1800) = ksh. 86, 000.

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

23) (a) Given the matrix, $A = \begin{pmatrix} 4 & -1 \\ 15 & -4 \end{pmatrix}$, find A^2 $A = \begin{pmatrix} 4 & -1 \\ 15 & -4 \end{pmatrix}$ $A^2 = \begin{pmatrix} 4 & -1 \\ 15 & -4 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ 15 & -4 \end{pmatrix}$

(b) Two businessmen Thomas and Stephen bought radios and juice blenders at sh x per radio and sh y per juice blender. Thomas paid a total of shs. 60 000 for 15 radios and 20 juice blenders while Stephen paid a total of shs. 64 000 for 14 radios and 24 juice blenders.

 $= \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}.$

i. Form a matrix equation to represent this information (2 marks)

15x + 20y = 60,00014x + 24y = 64,000.

$$\begin{pmatrix} 15 & 20 \\ 14 & 24 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} 60,000 \\ 64,000 \end{pmatrix}$$

$$Det;$$

$$= 360 - 280$$

$$= 80$$

$$Inverse;$$

$$= \frac{1}{80} \begin{pmatrix} 24 & -20 \\ -14 & 15 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3}{10} & -\frac{1}{4} \\ -\frac{7}{40} & \frac{3}{16} \end{pmatrix}$$

$$Solution will be at;$$

$$\begin{pmatrix} \frac{3}{10} & -\frac{1}{4} \\ -\frac{7}{40} & \frac{3}{16} \end{pmatrix}$$

$$\begin{pmatrix} 15 & 20 \\ 14 & 24 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{3}{10} & -\frac{1}{4} \\ -\frac{7}{40} & \frac{3}{16} \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2000 \\ 1500 \end{pmatrix}$$

$$Radio \cos t \, ksh. \, 2, \, 000$$

$$Juice \, blender \, \cos t \, ksh. \, 1, \, 500.$$

(c) Thomas sold all his radios and juice blenders at a profit of 20% per radio and 25% per juice blender. Stephen sold all his radios and juice blenders at a profit of 25% per radio and 20% per juice blender. Calculate the profit that each businessman made. (2 marks)	
Thomas;	Stephen;
15x + 20y = 60,000	14x + 24y = 64,000
120	125
$\frac{120}{100} \times 2000$	$\frac{125}{100} \times 2000$
100	100
= ksh. 2, 400	= ksh. 2, 500
125	120
$\frac{125}{100} imes 1,500$	$\frac{120}{100} \times 1,500$
100	100
= ksh. 1, 875	= ksh. 1, 800
Total S.P;	Total S. P;
= 15 (2, 400) + 20 (1, 875)	= 14 (2500) + 24 (1800)
= ksh. 73, 500	= ksh. 78, 200
- KSH. 70,000	- KSH. 70, 200
The serve serves 616	Charles an Dura Cit
Thomas profit	Stephen Profit;
= 73 , 500 – 60 , 000	= 78,200-64,000
= kshs, 13, 500.	= ksh. 14, 200.
- K3H3, 13, 300.	- K3H, 17, 200.

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

24) (a) Given the matrix
$$T = \begin{pmatrix} 3 & 4 \\ 7 & 12 \end{pmatrix}$$
, find T^{-1}

$$T = \begin{pmatrix} 3 & 4 \\ 7 & 12 \end{pmatrix}$$

$$Det = 36 - 28$$

$$T^{-1} = \frac{1}{8} \begin{pmatrix} 12 & -4 \\ -7 & 3 \end{pmatrix}$$

$$T^{-1} = \frac{1}{8} \begin{pmatrix} 12 & -4 \\ -7 & 3 \end{pmatrix}$$

- (b) Dorothy, a business lady, bought 3 blow dryers and 4 shaving machines at a cost of *sh*. 12,000. Had she bought 7 blow dryers and 12 shaving machines, she would have spent *sh*. 20,000 more.
 - i. Taking x and y to be the prices of a blow dryer and a shaving machine respectively, form a matrix equation to represent this information. (2 marks)

3x + 4y = 12,0007x + 12y = 20,000.

ii. Use the matrix method to find the cost of one blow dryer and one shaving machine. (4marks)

iii. Dorothy discovered that in another shop the price of a blow dryer is 20% less while that of shaving machine is 10% higher. Calculate how much she would have saved if she bought them from that shop. (2 marks)

 $\frac{80}{100} \times 2000$ New buying Price;
3(1,600) + 4(1,650)= ksh. 600.= ksh. 1,600= ksh. 11,400 $\frac{110}{100} \times 1,500$ Amount saved;
= 12,000 - 11,400

25) (a) Express A⁻¹ in the form
$$\begin{pmatrix} a & c \\ c & d \end{pmatrix}$$
 given that A = $\begin{pmatrix} 1 & 1 \\ 8 & 5 \end{pmatrix}$. (2 marks)
A = $\begin{pmatrix} 1 & 1 \\ 8 & 5 \end{pmatrix}$
Det;
= 5 - 8
= -3

- (b) A shirt and a blouse cost a total of Ksh. 2,700. When the price of the shirt is increased by 20% and that of the blouse is decreased by 25%, their total cost is Ksh. 2,565. By letting the price of the shirt to be x and that of the blouse to be y;
 - i. Form two simplified equations in x and y to represent the above information. (3 marks)

 $x + y = 2,700 \dots eq. 1$ $\frac{120}{100}x + \frac{75}{100}y = 2,565$

 $\frac{110}{100}x + \frac{10}{100}y = 2,565$ Multiplying through by 100; 120x + 75y = 256,500Dividing through by 15; $8x + 5y = 17,100 \dots eq. 2.$

ii. Using matrix method, find the cost of each item. (5 marks)

$$\begin{pmatrix} 1 & 1 \\ 8 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2,700 \\ 17,100 \end{pmatrix}$$

 $A = \begin{pmatrix} 1 & 1 \\ 8 & 5 \end{pmatrix}$
Det;
 $= 5-8$
 $= -3$
Inverse;
 $= -\frac{1}{2} \begin{pmatrix} 5 & -1 \\ -8 & 1 \end{pmatrix}$
 $= \begin{pmatrix} -\frac{5}{3} & \frac{1}{3} \\ \frac{8}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 8 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{5}{3} & \frac{1}{3} \\ \frac{8}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 2,700 \\ 17,100 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1,200 \\ 1,500 \end{pmatrix}$.

- (b) A student bought 16 exercise books and 10 pens at a total cost of Ksh. 1 018. If she had bought 12 exercise books and 8 pens, she would have spent Ksh 242 less.
 - i. Form a matrix equation to represent the information above. (2 marks) 16b + 10p = 1018 8b + 5p = 509 12b + 8p = 776 6b + 4p = 338.Simmplified form;

ii. Using the inverse of A in (a) above, determine the price of each item. (4 marks) $A^{-1} = \begin{pmatrix} 2 & -2.5 \\ -3 & 4 \end{pmatrix}$ $\begin{pmatrix} 2 & -2.5 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 6 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & -2.5 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 509 \\ 338 \end{pmatrix}$ From; $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 48 \\ 25 \end{pmatrix}$ $\begin{pmatrix} 8 & 5 \\ 6 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 509 \\ 338 \end{pmatrix}$ Solution will be;A book cost ksh. 48

(c) Find the total cost of 4 books and 5 pens by using matrices of orders 1 × 2 and 2 × 1 respectively.
 (2 marks)

4b + 5p

Using 1×2 Matrix;

 $(4 \quad 5) \begin{pmatrix} 48\\25 \end{pmatrix}$ = ksh. 317

Using a 2×1 Matrix;

 $\binom{4}{5}$ (48 25)

Incompatible Matrix.

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

- 27) To watch a movie, a fixed amount of Sh. x is charged and a further Sh. y for every movie watched. It cost Sh. 80 to watch 2 movies and Sh. 125 to watch 5 movies.
 - (a) Form two equations in x and y from the information above. (2 marks)

x + 2y = 80x + 5y = 125.

- (b) Express the equations in (a) above in matrix form. (1 mark) $\begin{pmatrix}
 1 & 2 \\
 1 & 5
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix} = \begin{pmatrix}
 80 \\
 125
 \end{pmatrix}$
- (c) Use a matrix method to find the values of *x* and *y* and hence state the standing charge for watching the movie. (5 marks)

$From;$ $(1 \ 2) (X) (80)$	$\begin{pmatrix} \frac{5}{3} & -\frac{2}{3} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{5}{3} & -\frac{2}{3} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 80 \\ 125 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 80 \\ 125 \end{pmatrix}$	$ \begin{pmatrix} \overline{3} & -\overline{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \overline{3} & -\overline{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 80 \\ 125 \end{pmatrix} $
Det;	$\begin{pmatrix} \mathbf{X} \\ \mathbf{V} \end{pmatrix} = \begin{pmatrix} 50 \\ 15 \end{pmatrix}$
= 5 - 2	
= 3	x = ksh. 50
Inverse;	y = ksh. 15
$=\frac{1}{3}\begin{pmatrix} 5 & -2\\ -1 & 1 \end{pmatrix}$	Standing charge; = kshs. 50.
$\begin{pmatrix} \frac{5}{3} & -\frac{2}{3} \end{pmatrix}$	- KSIIS. 30.
$= \begin{pmatrix} 3 & 3 \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix}$	

- The solution will be;
 - (d) Find the cost of watching 8 movies. (2 marks)

= x + 8y= 50 + (15 × 8) = ksh. 170.

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

28) (a) Given that
$$T^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{7}{8} & \frac{3}{8} \end{pmatrix}$$
, find the matrix T (2 marks)
 $TT^{-1} = I$
Let $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 $TT^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{7}{8} & \frac{3}{8} \end{pmatrix}$
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{7}{8} & \frac{3}{8} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $\begin{pmatrix} \frac{3}{2}a - \frac{7}{8}b & -\frac{1}{2}a + \frac{3}{8}b \\ \frac{3}{2}c - \frac{7}{8}d & -\frac{1}{2}c + \frac{3}{8}d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $\begin{pmatrix} \frac{3}{2}a - \frac{7}{8}b & -\frac{1}{2}a + \frac{3}{8}b \\ \frac{3}{2}c - \frac{7}{8}d & -\frac{1}{2}c + \frac{3}{8}d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $\frac{3}{2}c - \frac{7}{8}d = 0$
 $\frac{3}{2}c - \frac{7}{8}d = 1$
 $-\frac{1}{2}c + \frac{3}{8}d = 1$ eq. 3
 $-\frac{1}{2}c + \frac{3}{8}d = 1$ eq. 4
Substituting eq. 3 into eq. 4;
 $-\frac{1}{2}(\frac{7}{12}d) + \frac{3}{8}d = 1$
 $\frac{1}{12}d = 1$
 $\frac{2}{3}(\frac{4}{3}b) - \frac{7}{8}b = 1$
 $\frac{9}{8}b - \frac{7}{8}b = 1$
 $T = \begin{pmatrix} 3 & 4 \\ 7 & 12 \end{pmatrix}$.

- (b) Two ladies bought trouser suits and skirt suits from a boutique at Ksh x and sh y per item respectively. Jane paid Ksh 12,000 for 3 trouser suits and 4 skirt suits. Lucy paid Ksh 32,000 for 7 trouser suits and 12 skirt suits.
 - i. Form a matrix equation to represent this information (2 marks)

3x + 4y = 12,000	Matrix equation are;
7x + 12y = 32,000	$\begin{pmatrix} 3 & 4 \\ 7 & 12 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 12,000 \\ 32,000 \end{pmatrix}.$

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON

(c) By using 1 × 2 and 2 × 1 matrices respectively, calculate the total cost of 5 trouser suits and 7 skirt suits. (2 marks)

Using 1 × 2 Matrix $(5 \ 7) \begin{pmatrix} 2,000\\ 1,500 \end{pmatrix}$ = ksh. 20, 500 Using 2 × 1 matrix; $\begin{pmatrix} 5\\ 7 \end{pmatrix} (2,000 \ 1,500)$

The matrix is incompatible.

29) In a week, a school buys 15 bags of maize, 8 bags of beans, 16 bags of rice and 4 bags of sugar. The prices per bag of each commodity are sh.1400, sh.2600, sh.1600 and sh. 1500 respectively.

(a) Form 1×4 matrix to represent the number of bags bought by the school. (1 mark)

(15 8 16 4)

(b) Form a 4×1 matrix representing the cost of the above commodities. (1 mark)

(1,400 2,600 1,600 1,500

(c) Find by matrix method the amount of money the school spends per week. (2 marks)

 $(15 \quad 8 \quad 16 \quad 4) \begin{pmatrix} 1, 400\\ 2, 600\\ 1, 600\\ 1, 500 \end{pmatrix}$ = 21,000 + 20,800 + 25,600 + 6,000= ksh. 73,400.

- (d) A transporter has two types of buses; type A and type B. Type A has a capacity for 52 passengers and 200kg of luggage while type B has a capacity for 32 passengers and 300kg of luggage. At full capacity, the revenue from type A is sh. 62,000 and from type B is sh. 47,000. Taking sh.x to be the fare per passenger and sh.y to be the charge per kilogram of luggage;
 - i. Form a pair of linear equations to represent this information. (1 mark)

52x + 200y = 62,000

32x + 300y = 47,000.

ii. Use matrix method to find the values of x and y. (5 marks) From; 52x + 200y = 62,000 32x + 300y = 47,000. $\binom{52 \ 200}{32 \ 300}\binom{x}{y} = \binom{62,000}{47,000}$ Det; $= (300 \times 52) - (32 \times 200)$ = 9,200Inverse; $= \frac{1}{9,200}\binom{300 \ -200}{-32 \ 52}$ $= \binom{\frac{3}{92} \ -\frac{1}{46}}{-\frac{2}{575} \ \frac{13}{2300}}$

Solution will be;

$$\begin{pmatrix} \frac{3}{92} & -\frac{1}{46} \\ -\frac{2}{575} & \frac{13}{2300} \end{pmatrix} \begin{pmatrix} 52 & 200 \\ 32 & 300 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3}{92} & -\frac{1}{46} \\ -\frac{2}{575} & \frac{13}{2300} \end{pmatrix} \begin{pmatrix} 62,000 \\ 47,000 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10,00 \\ 50 \end{pmatrix}$$

$$x = \text{ksh. 1,000}$$

$$y = \text{ksh. 50.}$$

30) (a) Given that
$$P = \begin{pmatrix} 3 & -1 \\ x & 5 \end{pmatrix}$$
 and $Q = \begin{pmatrix} x & -11 \\ 8 & 18 \end{pmatrix}$, find x if $|P^2 - Q| = 1$
 $P = \begin{pmatrix} 3 & -1 \\ x & 5 \end{pmatrix}$ and $Q = \begin{pmatrix} x & -11 \\ 8 & 18 \end{pmatrix}$
 $P^2 = \begin{pmatrix} 3 & -1 \\ x & 5 \end{pmatrix}$ ($3 & -1 \\ x & 5 \end{pmatrix}$
 $= \begin{pmatrix} 9 - x & -8 \\ 8x & -x + 25 \end{pmatrix}$
 $P^2 - Q = \begin{pmatrix} 9 - x & -8 \\ 8x & -x + 25 \end{pmatrix} - \begin{pmatrix} x & -11 \\ 8 & 18 \end{pmatrix}$
 $= \begin{pmatrix} 9 - 2x & 3 \\ 8x - 8 & -x + 7 \end{pmatrix}$
But;
 $|P^2 - Q| = 1$
 $Det = 1;$
 $[(9 - 2x)(7 - x)] - [(3)(8x - 8)] = 1$
 $[(9 - 2x)(7 - x)] - [(3)(8x - 8)] = 1$
 $P = \begin{pmatrix} 3 & -1 \\ 8 & 18 \end{pmatrix}$
 $P = \begin{pmatrix} 47 \pm 39 \\ 4 \end{pmatrix}$
 $x = 21.5$
 $x = 2.$

- (b) John intends to buy 10 exercise books, 3 fountain pens and a bottle of ink while Ken intends to buy 12 exercise books, 2 fountain pens and 2 bottles of ink. The items can be bought from two stationers; A and B. Stationer A sells an exercise book at sh. 45, a fountain pen at sh. 100 and a bottle of ink at sh. 80. Stationer B sells an exercise book at sh. 50, a fountain pen at sh. 95 and a bottle of ink at sh. 75.
 - i. Use a 2×3 matrix to represent number of items bought by John and Ken. (1 mark)

 $\begin{pmatrix}10&3&1\\12&2&2\end{pmatrix}$

ii. Use a 3×2 matrix to represent the prices of the items from the two stationers. (1 mark)

45	50 \
100	95
80	75/

iii. Using the matrices in (a) and (b) above, determine the total cost that would be incurred by John and Ken when they buy from the two stationers. (3 marks)

 $\begin{pmatrix} 10 & 3 & 1 \\ 12 & 2 & 2 \end{pmatrix} \begin{pmatrix} 45 & 50 \\ 100 & 95 \\ 80 & 75 \end{pmatrix}$ = $\begin{pmatrix} (10 \times 45) + (3 \times 100) + (1 \times 80) & (10 \times 50) + (3 \times 95) + (1 \times 75) \\ (12 \times 45) + (2 \times 100) + (1 \times 80) & (12 \times 50) + (2 \times 95) + (1 \times 75) \end{pmatrix}$ = $\begin{pmatrix} 830 & 860 \\ 900 & 940 \end{pmatrix}$

MARTICES MARKING SCHEME COMPILED BY NYIKURI NASHON