
CHLORINE AND ITS COMPOUNDS.

Laboratory preparation of chlorine.

- \Rightarrow Chlorine is prepared by oxidation of concentrated Hydrochloric acid.
- The common oxidising agent used are potassium manganate $KMnO_4$ and manganese oxide MnO_2 .

 $MnO_{2 (S)} + 4HCL_{(aq)} \longrightarrow MnCl_{2 (aq)} + 2H_2O_{(l)} + Cl_{2 (g)}.$

- \Rightarrow Chlorine gas is collected by downward delivery as it is denser than air.
- ☆ Chlorine gas is fairly soluble in water hence should not be collected over water, however it can be collected over concentrated sodium chloride NaCl_(aq)
- $\Rightarrow \text{NaOH}_{(aq)} + \text{Cl}_2(g) \longrightarrow \text{NaOCl}_{(aq)} + \text{NaCl}_{(aq)} + \text{H}_2O_{(l)}$

Preparation of chlorine by oxidation of HCl using potassium permanganate (KMnO₄)

 \diamond This reaction is vigorous and heating is not required.

 $2KMnO_4 + 16HCL_{(aq)} \longrightarrow 2KCl + 2MnCl_{2(aq)} + 5Cl_{2(g)} + 8H2O_{(l)}$

Other methods of chlorine preparation

✓ From bleaching powder (CaOCl₂)

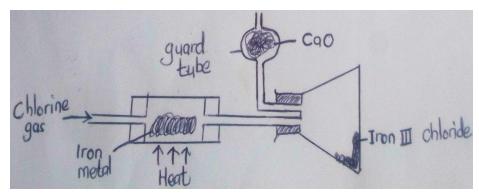
 $CaOCl_{2(s)} + 2HNO_{3 (aq)} \longrightarrow Ca (NO_{3})_{2 (aq)} + H_{2}O_{(l)} + Cl_{2 (g)}$

 $CaOCl_{2(s)} + 2HCl_{(aq)} \longrightarrow CaCl_{2(aq)} + H_2O_{(l)} + Cl_{2(g)}$

NOTE: sulphuric acid should not be used in this case as the reaction stops after a while. This is because of the formation of an insoluble layer on $CaOCl_2$ which prevents further reaction.

Preparation of chlorine from sodium chloride NaCl, sulphuric acid and Manganese (IV) oxide

- ♦ The mixture is heated to generate chlorine gas. $2NaCl_{(s)} + 2H_2SO_4(l) + MnO_2(s) \longrightarrow Na_2SO_{4(aq)} + MnSO_4 + H_2O + Cl_{2(g)}$
- ♦ The role of concentrated sulphuric acid is to generate hydrochloric acid by reacting with sodium chloride.
 NaCl (s) +H₂SO₄(l) → NaHSO₄(aq) + HCl (aq)
- $\label{eq:linear} \begin{array}{l} & \mbox{The role of manganese oxide or potassium manganate is to oxidise the concentrated hydrochloric acid to produce chlorine gas.} \\ & \mbox{MnO}_{2(s)} + 4 H Cl_{(aq)} \longrightarrow MnCl_{2(aq)} + H_2 O_{(l)} + Cl_{2(g)} \end{array}$


Physical properties of chlorine gas.

- ♦ Greenish yellow gas with unpleasant chocking and irritating smell.
- ♦ It is denser than air hence collected by downward delivery.
- \diamond It is fairly soluble in water and reacts with water to form chlorine water.
- ♦ It occurs as a diatomic molecule.

Physical properties of chlorine gas

Reaction of chlorine with iron wool (metals)

~ Chlorine reacts with heated iron to form iron III chloride which sublimes.

~ The reaction is as follows $2Fe_{(s)} + 3Cl_{2(g)} \longrightarrow 2FeCl_3$

reaction in the guard tube

$$CaO_{(s)} + H_2O \longrightarrow Ca (OH)_{2 (s)}$$
$$CaO_{(s)} + Cl_{2 (g)} \longrightarrow CaOCl_{2(s)}$$

Bleaching powder. What is the role /function of Cao/CaCl₂ in the guard tube?

- \sim It absorbs moisture from air and keeps the apparatus dry.
- ~ It prevents hydrolysis of iron III chloride, FeCl₃.

Why CaO is preferred compared to CaCl2 in the guard tube?

- It absorbs both moisture and excess chlorine gas.

Note:

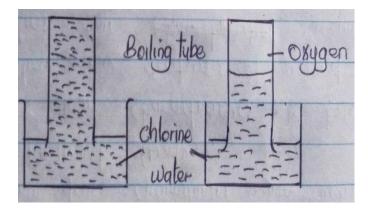
- This experiment should be conducted in the fume chamber as chlorine gas is poisonous.
- ☆ It is necessary to pass chlorine gas through the apparatus before heating begins-this is to expel air which would otherwise oxidize iron before the reactions starts.
- ☆ Iron III chloride is collected using the method above because it sublimes on heating hence collected far away from the heating point.
- * Chlorine is a bleaching agent.

 $Cl_{2(g)} + H_2O_{(l)} \longrightarrow HOCl_{(aq)} + HCl_{(aq)}$

- HOCl $_{(aq)}$ + dye (coloured) \longrightarrow HCl $_{(aq)}$ + Dye (colourless)
- \sim Chlorine reacts with water to form hypochlorous acid which bleaches by oxidation.

***** Reaction of chlorine gas with dilute and cold sodium hydroxide solution.

When chlorine gas is bubbled through cold and dilute NaOH solution, the resulting solution acts as a bleaching agent due to pressure sodium hypochlorite which is bleached by oxidation.


 $NaOH_{(s)} + Cl_{2(g)} \longrightarrow NaCl + NaOCl + H_2O$

Explain how the resulting solution acts as a bleaching agent.

- \sim Due to the presence of NaOCl which bleaches by oxidation.
- * Reaction between chlorine gas and concentrated NaOH (hot and conc NaOH)
- Excess chlorine reacts with hot concentrated solution of NaOH to form chloride, sodium chlorate and water.

 $6NaOH_{(aq)} + 3Cl_{2(g)} \longrightarrow 5NaClO_{3(aq)} + 3H_2O_{(l)}$

Sodium chlorate. **Exposure of chlorine water to sunlight.**

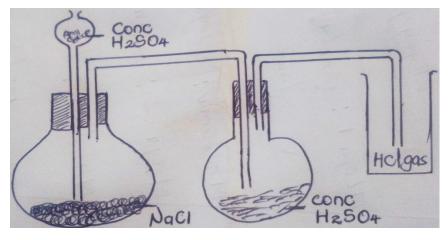
Test for chlorine gas.

- \sim It is a greenish yellow gas with a pungent smell.
- ~ It bleaches dump litmus papers.

Observation.

- ~ Red litmus paper is bleached.
- \sim Blue litmus paper changes to red and then it is bleached.

✤ Uses of chlorine gas.


- ~ Industrial manufacture of hydrochloric acid.
- ~ Used in water treatment to kill germs.
- ~ Manufacture plastics like PVC(poly vinyl chloride)
- ~ Manufacture of herbicides and insecticides.
- ~ Manufacture of sodium hypochlorite used in sewage treatment.

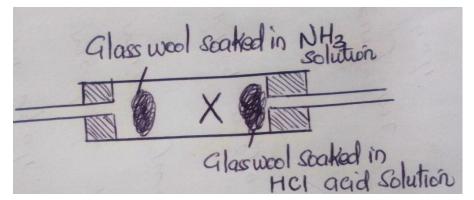
Chlorine gas is poisonous yet it is used in water treatment, expain.

 Used in wider proportion and it reacts with water to form a harmless HCL acid (HOCl).

HYDROGEN CHLORIDE GAS

- ~ It is prepared by heating metal chloride with concentrated sulphuric (VI) acid.
- ~ The common chloride used is sodium chloride.

NaCl $_{(s)}$ + H₂SO_{4 (l)} \longrightarrow NaHSO₄(s) + HCL $_{(g)}$


Properties of hydrogen chloride gas.

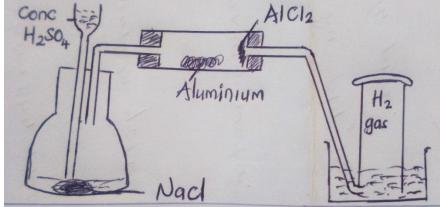
* Physical properties.

- It is denser than air hence it is collected by upward displacement or downward delivery.
- \sim It is highly soluble in water thus could be collected over water.
- ~ It has a low boiling point
- ~ Has a strong pungent and irritating smell.

Chemical properties.

* Reaction with ammonia

 Hydrogen chloride gas form white cloud/ ring when reacted with ammonia gas. The white ring or clod formed is ammonium chloride.


 $\underset{Colourless}{\text{NH3}} (g) + \underset{colourless}{\text{HCl}} (g) \longrightarrow \underset{white.}{\text{NH4Cl}} (g)$

* Reaction with metals.

It is a reducing agent and it reacts with metals to liberate hydrogen gas.
 Aluminium

 $2Al_{(s)} + 6HCl_{(g)} \longrightarrow 2AlCl_3 + 3H_{2(g)}$

 \sim HCl gas reacts with aluminium to form aluminium chloride and hydrogen gas.

~ AlCl₃ forms far away from hear as it sublimes when heated.

* Reaction of hydrogen chloride gas with carbonates and bicarbonates.

 Hydrogen chloride gas reacts to form metal chlorides, water and carbon (IV) oxide gas.

 $Na_2CO_{3(s)} + 2HCl_{(g)} \longrightarrow 2NaCl_{(aq)} + H_2O_{(l)} + CO_{2(g)}$

 $CaCO_{3(s)} + 2HCl_{(g)} \longrightarrow CaCl_{2(aq)} + H_2O_{(l)} + CO_{2(g)}$

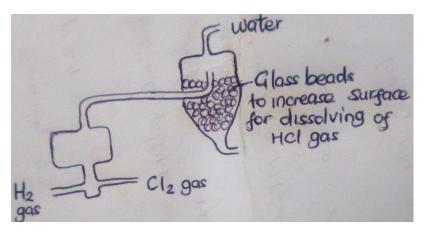
- ***** Oxidation of Hydrogen chloride gas
- The gas is oxidised by oxidising agents such as mno₂ and kmno₄ to liberate chlorine gas.

 $MnO_{2 (s)} + 4HCl_{(g)} \longrightarrow MnCl_{2 (aq)} + 2H_2O_{(l)} + Cl_{2 (g)}$

Note:

✓ Hydrogen chloride gas reacts with iron (Fe) to form Iron (II) chloride and chlorine reacts with iron (Fe) to form Iron (III) chloride.

 $Fe_{(s)} + HCl_{(g)} \longrightarrow FeCl_{2(s)} + H_2O_{(s)}$


 $2Fe_{(s)} + Cl_{2(g)} \longrightarrow 2FeCl_{3(s)}$ Brown

Industrial manufacture of Hydrochloric acid.

 HCL acid id manufactured by direct synthesis where hydrogen gas is reacted with chlorine gas.

 $H_{2(g)} + Cl_{2(g)} \longrightarrow 2HCl_{(g)}$

- The Hydrogen chloride gas formed is dissolved in water to produce HCL acid.
 Sources of hydrogen gas.
- Cracking of alkanes.
 Sources of chlorine gas.
- ~ Electrolysis of brine.

Test for hydrochloric acid.

- ~ It form white fumes of ammonium chloride (NH_4Cl) when reacted with ammonia.
- ~ It forms white precipitate when reacted with lead (II) nitrate, Pb (NO₃)₂ solution. $Pb^{2+}_{(aq)} + Cl^{-} \longrightarrow PbCl_{2(s)}$

Note:

- Hydrochloric acid is highly soluble in water and if a solution is required it should be dissolved in water using an inverted funnel to prevent sucking back.
 Used of hydrochloric acid.
- \sim Used in manufacture of dyes and drugs.
- ~ Used in pickling of metals before electroplating. (cleaning metal surfaces)
- ~ Used in manufacture of PVC pipes.
- ~ Used in controlling of pH in brine during the manufacture of caustic soda (NaOH)

Note:

Concentrated hydrochloric acid does not react with copper metal but nitric and sulphuric acid reacts with copper metal, **explain** Nitric and sulphuric acid are strong oxidising agents and oxidises copper metal to Cu²⁺
 while HCl is a reduced agent and cannot oxidise copper to Cu²⁺.