VECTORS II QUESTIONS AND ANSWERS ON COLLINEARITY MODEL26042023 FORM 3 LEVEL

1 Given that $\mathrm{OA}=3 \mathrm{i}+4 \mathrm{j}+7 \mathrm{k}, \mathrm{OB}=4 \mathrm{i}+3 \mathrm{j}+9 \mathrm{k}$ and $\mathrm{OC}=\mathrm{i}+6 \mathrm{j}+3 \mathrm{k}$. Show that points A, B and C are collinear.

2 In the diagram below, the coordinates of points A and B are $(1,6)$ and $(15,6)$ respectively.

Point N is on OB and that $30 \mathrm{~N}=2 \mathrm{OB}$. Line OA is produced to L such that $\mathrm{OL}=3 \mathrm{OA}$.
a) Find vector LN
b) Given that a point M is on LN such that $\mathrm{LM}: \mathrm{MN}=3: 4$ find the coordinate of M
c) If line OM is produced to T such a that $\mathrm{OM}: \mathrm{MT}=6: 1$
i) Find the position vector of T
ii) Show that points L, T and B are collinear

The position vectors of points P, Q and R are $\mathbf{O P}=\binom{-3}{6}, \mathbf{O Q}=\binom{2}{1}, \mathbf{O R}=\binom{4}{-1}$. Show that
P, Q and R are collinear.

Answer

$$
\begin{aligned}
O L & =3\binom{1}{6} \\
& =\binom{3}{18} \\
O N & =\frac{2}{3}\binom{15}{6} \\
& -\binom{10}{4} \\
L N & =O N-O L \\
& =\binom{10}{4}-\binom{3}{18} \\
& =\binom{7}{-14}
\end{aligned}
$$

(b) Given that a point M is on $L N$ such that $L M$: $M N=3: 4$, fin of (2 marks)

Answer
$O M=O L+\frac{3}{7} L N$
$=\binom{3}{18}+\frac{3}{7}\binom{7}{-14}$
$=\binom{3}{18}+\binom{3}{-6}$
$=\binom{6}{12}$
$=M(6,12)$

$$
\begin{aligned}
& \text { Answer } \\
& \qquad \begin{aligned}
O T & =\frac{7}{6} O M \\
& =\frac{7}{6}\binom{6}{12} \\
& =\binom{7}{14}
\end{aligned}
\end{aligned}
$$

(ii) Show that points L, T and B are collinear Answer

$$
\begin{aligned}
L T & =\binom{7}{14}-\binom{3}{18} \\
& =\binom{4}{-4} \\
L B & =\binom{15}{6}-\binom{3}{18} \\
& =\binom{12}{-12} \\
L B & =3 L T
\end{aligned}
$$

$$
L \text { is the common point. }
$$

3

$$
\begin{gathered}
\mathbf{P Q}=\binom{3}{-6}+\binom{2}{1}=\binom{5}{-5} \\
\mathbf{Q R}=\binom{4}{-1}-\binom{2}{1}=\binom{2}{-2}
\end{gathered}
$$

$\mathbf{P Q}=\frac{5}{2} \mathbf{Q R}$ and Q is a common point
$\therefore \mathrm{P}, \mathrm{Q}$ and R are collinear

