FURTHER LOGARITHMS KCSE QUESTIONS WITH ANSWERS MODEL27042023

Find the value of x in the equation $\log_{10} 5 - 2 + \log_{10} (2x+10) = \log_{10} (x-4)$ (3marks)

Solve the equation below. (3 marks)

$$7^{2x} - 8 \times 7^x + 7 = 0$$

3 Use logarithms correct to 4 decimal places to evaluate. (3mks)

- Solve the equation; $2 \log x \log (x 2) = 2 \log 3$
- 5 Evaluate without using mathematical tables, the expression

$$2 \log_{10} 5 - \frac{1}{2} \log_{10} 16 + 2 \log_{10} 40$$

6 Simplify

$$\frac{243^{\frac{-2}{5}} \times 125^{\frac{2}{3}}}{9^{\frac{-3}{2}}}$$

MARKING SCHEME

7. Find the value of x in the equation $\log_{10} 5 - 2 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (2x + 10) = \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} 10 + \log_{10} (x - 4)$ $\log_{10} 5 - 2 \log_{10} (x - 4)$ \log_{1

No	Std Form	Log	
O.3698	3.698 x 10 ⁻¹	ī.5680 +	
Sin 56		Ī.9918	
		1.5589 ₋	$ $ $_{\mathbf{M}}$
2.548	2.548 x 10°	0.4062	14.
		$\frac{\bar{1}.1536}{2} = \frac{\bar{2} + 1.1536}{2}$	M
0.3774	antilog	2 = 1.5768	A
$\frac{2}{7^x - 8.7x + 7} = 0$			
7 -0.7x + 7 - 0			
Let $7^x = y$			
$y^2 - 8y + 7 = 0$			

$$y^2 - 8y + 7 = 0$$

$$y^2 - 7y - y + 7 = 0$$

$$y(y-7)-1(y-7)=0$$

$$(y-1)(y-7)=0$$

$$y = 1 \text{ or } y = 7$$

$$7^x = 1$$
 or $7^x = 7^1$

$$x = 0 \ x = 1$$

$$\frac{x^2}{x-2} = 9$$

 $x^2 - 9x + 18 = 0$

$$(x-6)(x-3)=0$$

x = 6 or x = 3

5

 $2 \log_{10} 5 - 1/2 \log_{10} 16 + 2 \log_{10} 40$. $Log(25 \times 40; 40) = log 10000$

$$=\frac{243^{\frac{-2}{5}} \times 125^{\frac{2}{3}}}{9^{\frac{-3}{2}}}$$

M1

M1

M1

A1

M1A1

equivalent simplification

 $\sqrt{\ }$ manipulation