CHEMISTRY PAPER 1 233/1 **MARKING SCHEME**

- 2.86 1.(a)
 - (b) (i) p - 11
 - (ii) y - 16

(c) $p_2 y$

Mass of hydrated salt 33.111g 2.

		0
-	30.2	96g
	2 91	5

Mass of anhydrous salt 32.781

-	30.296
	2.485

Mass of water 2.815 - 2.485 = 0.33

CaSo ₄	H ₂ O
<u>2.485</u>	<u>0.33</u>
136	18
0.01827	<u>0.01833</u>
0.01827	0.01827
1:1	

Ca SO₄. H₂O

- Dynamic equilibrium is a state in reaction where both the forward and the backward reaction occur at 3(a) the same rate.
- Backward reaction will be favoured/reaction will shift towards the reactants side/left hand side. (b) This is because addition of magnesium will lead to reaction between magnesium and water hence production of more hydrogen.
- Butanoic acid. 4.

- propanol

- 5. Burn copper in oxygen to form copper (II) oxide.
 - Add the oxide in dilute hydrochloric acid in excess.
 - Filter to obtain filtrate
 - Evaporate the filtrate not to dryness.
- 6.(a) The rate of diffusion is inversely proportional to the square root of density provided the physical conditions is kept constant.

(b)
$$\frac{Rw}{Rx} = \frac{mx}{mw}$$

$$\frac{12}{\text{Rx}} = \sqrt{\frac{16}{44}}$$

 $Rx = 19.8997 \text{ cms}^{3-1}$

- 7. (a) $A_{(s)}/A^{2+}_{(aq)}$ // $2C^{+}_{(aq)}$ / $2C_{(s)}$
 - (b) The colour of solution turns to blue.

There is silver deposit

Copper is oxidized to copper (II) ions while silver ion is reduced to silver.

8. (a) I Nuclear fusion

II Nuclear fission

(b) Chemical Reaction	Nuclear Reaction
involves valency electronLittle amount of energy released	involves the proton and neutronInvolves large amount of energy
	1

9.(a) (i) Mn + 4 (-2) = 1 Mn = 1 + 8 Mn = + 7 (ii) Mn + (-2) = 0 Mn = + 2 (b) Mn⁺⁷ \longrightarrow Mn⁺⁸

Manganese has lost an electron to be oxidized to manganese of positive +8

10.

14. Mass of carbon used = 1.9053g - 1.804= 0.1013gNumber of moles of carbon used = 0.101312= 0.008442 moles Number of atoms used = $0.008442 \times 6.00 \times 10^{23}$ = 5.0652×10^{21} atoms 15. (a) HOOC - C₆H₄ - COOH + HO (CH₂) 2OH HO -c - C₆H₄ - C-O - CH₂ CH₂ OH + H₂O

- (b) Condensation polymensation
- 16 (i) C

Because its melting point is below won temperature

(ii)

С

Amount of heat = 0.25×92 = 24.5KJ

Heat = MC $\Delta\theta$ $\Delta\theta = \frac{\text{Heat}}{\text{Mc}} = \frac{24500}{100 \text{ x } 4.2} = 58.3\text{K}$

24.(a) The air is compressed to a pressure of 200 atmosphere

- cooled to a temperature of -200° C

- Fractional distillation of liquidfied air is done and oxygen is obtained at $-86^{\circ}C$
- (b) Concentrated sulphuric (VI) acid
- 25.(a) The brown solid turns to grew solid.

(b) $\operatorname{Fe}_2O_{3(s)} + 3CO_{(g)} \longrightarrow 2\operatorname{Fe}_{(s)} + 3CO_{2(g)}$

- 26.(a) Mass of burning gases
 - (b) Non-luminous flame