CHEMISTRY PAPER 1 233/1

MARKING SCHEME
1.(a) 2.86
(b) (i) $\mathrm{p}-11$
(ii) $y-16$
(c) $p_{2} y$
2. Mass of hydrated salt 33.111 g
$-\frac{30.296 \mathrm{~g}}{2.815}$
$\underline{\mathbf{2 . 8 1 5}}$
Mass of anhydrous salt $\quad 32.781$
$-\frac{30.296}{\mathbf{2 . 4 8 5}}$
Mass of water $2.815-2.485=0.33$

CaSO_{4}	$\mathrm{H}_{2} \mathrm{O}$	
$\frac{2.485}{136}$		$\underline{0.33}$
$\frac{0.01827}{0.01827}$		$\underline{0.01833}$
$\mathbf{1 : 1}$		0.01827

$\mathrm{Ca} \mathrm{SO}_{4} . \mathrm{H}_{2} \mathrm{O}$
3(a) Dynamic equilibrium is a state in reaction where both the forward and the backward reaction occur at the same rate.
(b) Backward reaction will be favoured/reaction will shift towards the reactants side/left hand side.

This is because addition of magnesium will lead to reaction between magnesium and water hence production of more hydrogen.
4. - Butanoic acid.

- propanol

5. Burn copper in oxygen to form copper (II) oxide.

- Add the oxide in dilute hydrochloric acid in excess.
- Filter to obtain filtrate
- Evaporate the filtrate not to dryness.
6.(a) The rate of diffusion is inversely proportional to the square root of density provided the physical conditions is kept constant.
(b) $\frac{\mathrm{Rw}}{\mathrm{Rx}}=\sqrt{\mathrm{mx}}$
$\frac{12}{\operatorname{Rx}}=\sqrt{\frac{16}{44}}$

$$
R x=19.8997 \mathrm{cms}^{3-1}
$$

7. (a) $\mathrm{A}_{(\mathrm{s})} / \mathrm{A}^{2+}{ }_{(\mathrm{aq})} / / 2 \mathrm{C}^{+}{ }_{(\mathrm{aq})} / 2 \mathrm{C}_{(\mathrm{s})}$
(b) The colour of solution turns to blue.

There is silver deposit
Copper is oxidized to copper (II) ions while silver ion is reduced to silver.
8. (a) I Nuclear fusion

II Nuclear fission
(b) Chemical Reaction

- involves valency electron
- Little amount of energy released

Nuclear Reaction

- involves the proton and neutron
- Involves large amount of energy
9.(a) (i) $\mathrm{Mn}+4(-2)=1$
$\mathrm{Mn}=1+8$
$\mathrm{Mn}=+7$
(ii) $\mathrm{Mn}+(-2)=0$
$\mathrm{Mn}=+2$
(b) $\mathrm{Mn}^{+7} \longrightarrow \mathrm{Mn}^{+8}$

Oxidized
Manganese has lost an electron to be oxidized to manganese of positive +8
10.

11. Mass $\mathrm{CH}_{3} \mathrm{COOH}$ used $=15 \times 1.05$

$$
=15.75 \mathrm{~g}
$$

Moles of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{15.75}{60}=0.2625$ moles

$$
\begin{aligned}
& 500 \mathrm{~cm}^{3}=\mathbf{0 . 2 6 2 5} \text { moles } \\
& 1000=\frac{1000 \times 0.2625}{500}
\end{aligned}
$$

$$
=0.525 \mathrm{MCH}_{3} \mathrm{COOH}
$$

12. (a) Amphoteric hydroxide
(b) Aluminium hydroxide

- zinc hydroxide
- lead hydroxide

13 (a) Syringe
(b) (i)

(ii)Temperature increases the kinetic energy of particles hence increasing the collision between the reactants and this Makes the rate of reaction to increase.
14. \quad Mass of carbon used $=1.9053 \mathrm{~g}-1.804$

$$
=0.1013 \mathrm{~g}
$$

Number of moles of carbon used $=\underline{0.1013}$

$$
=0.008442 \text { moles }
$$

Number of atoms used $=0.008442 \times 6.00 \times 10^{23}$

$$
=5.0652 \times 10^{21} \text { atoms }
$$

15. (a) $\mathrm{HOOC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COOH}+\mathrm{HO}\left(\mathrm{CH}_{2}\right) 2 \mathrm{OH}$

$$
\mathrm{HO}-\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}
$$

(b) Condensation polymensation
(i) C

Because its melting point is below won temperature
(ii)
17. $\mathrm{NH}_{4}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$

$\mathrm{NH}_{4}{ }^{+}$donates proton in forward reaction
$\mathrm{H}_{3} \mathrm{O}^{+}$donates proton in backward reaction.
18. (a) The a colour of sodium Iodide changes to brown
$\mathrm{CL}_{2(\mathrm{~g})}+2 \mathrm{I}_{(\mathrm{AQ})}+\mathrm{I}_{2}{ }^{(1)}$
(b) Covalent

Both are non metals
19. (a) Zinc hydroxide
(b) $\mathrm{Zn}^{2+}\left(\mathrm{aq}+2 \mathrm{OH}(\mathrm{aq}) \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2}\right.$ (s)
(c) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
20.
(i)

(ii)

$\begin{array}{ccc}\mathrm{O} & \mathrm{O} \\ \text { (iii) } \mathrm{HO}- & \\ \mathrm{C}- & \mathrm{C} & -\mathrm{OH}\end{array}$
21. (a) (i) NO_{2} (g)
(ii) $\mathrm{O}_{2(\mathrm{~g})}$
(b) $\mathrm{Zn}^{2+}{ }_{(\text {aq })}$ and $\mathrm{NO}_{3 \text { (aq) }}^{-}$
22. (a) Water, Ammonia, carbon (iv) oxide
(b) $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{aq})$
$\mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{25}(\mathrm{aq}) \longrightarrow \mathrm{MgCO}_{3}(\mathrm{~s})$
23. Number of moles $=\frac{8.5}{34}=0.25$ moles

$$
\begin{aligned}
\text { Amount of heat } & =0.25 \times 92 \\
& =24.5 \mathrm{KJ}
\end{aligned}
$$

```
Heat \(=\mathrm{MC} \Delta \theta\)
\[
\Delta \theta=\underline{\text { Heat }}=\underline{24500}=\underline{\mathbf{5 8 . 3 K}}
\]
```

24.(a) The air is compressed to a pressure of 200 atmosphere

- cooled to a temperature of $-200^{\circ} \mathrm{C}$
- Fractional distillation of liquidfied air is done and oxygen is obtained at $-86^{\circ} \mathrm{C}$
(b) Concentrated sulphuric (VI) acid
25.(a) The brown solid turns to grew solid.
(b) $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})} \longrightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~g})}$
26.(a) Mass of burning gases
(b) Non-luminous flame

